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1 Introduction

Combinatorial probability theory, which studies the properties of random variables on
finite sets, is a classical branch of modern probability theory. One of the most famous
problems in this field is the birthday problem, which in its generalized form is closely
related to the coupon collector’s problem. In this paper, we consider the following
setup: an infinite sequence of objects, where each is independently assigned to one
of 𝑛 classes with a probability of 1

𝑛 . The objects arrive sequentially at discrete time
points. For a fixed integer 𝑟 ⩾ 1, we are interested in the first moment in time when
some class is represented for the (𝑟 + 1)-th time.

The asymptotic properties of this model have been actively investigated in recent
years. Specifically, the case of a single fixed completion level 𝑟 was analyzed in de-
tail in (Ilienko & Stamatiieva, 2021). A further generalization, presented in (Ilienko
& Stamatiieva, 2024), involved studying the joint asymptotic behavior for all levels
simultaneously based on 𝑟-dependent power normalization.

This article proposes an alternative approach to studying joint asymptotics. We
consider a multi-level process where convergence is achieved by using a common nor-
malization for all levels in combination with a thinning operation. This approach
proves to be particularly effective for investigating certain specific functionals of the
process.

The objective of this work is to prove the convergence of the thinned multi-level
point process in a Poissonized model to a limiting Poisson process, and to apply this
theoretical result to find the joint limiting distribution for the number of classes that
have reached lower completion levels by a random time defined by an event at a fixed
higher level.

2 Preliminaries

Let us formally define the key random variables and concepts outlined in the Intro-
duction.

In the discrete-time model of the generalized birthday problem, we denote by 𝑌
(𝑛)
𝑖,𝑟

the arrival time of the (𝑟 + 1)-th object of class 𝑖. This variable follows a negative

binomial distribution, 𝑌
(𝑛)
𝑖,𝑟 ∼ NegBin

(︀
𝑟 + 1, 1𝑛

)︀
. A significant challenge is that the

random variables
{︁
𝑌

(𝑛)
𝑖,𝑟

}︁𝑛
𝑖=1

are dependent, which complicates direct analysis.

To overcome this dependency, we employ the method of Poissonization, first pro-
posed by L. Holst (Holst, 1986). This technique embeds the problem into a continuous-

time framework. In this Poissonized model, the corresponding arrival time 𝑍
(𝑛)
𝑖,𝑟 for

each class 𝑖 has a gamma distribution, 𝑍
(𝑛)
𝑖,𝑟 ∼ Γ

(︀
𝑟 + 1, 1𝑛

)︀
. A crucial property of

this framework is that the random variables 𝑍
(𝑛)
1,𝑟 , . . . , 𝑍

(𝑛)
𝑛,𝑟 are now independent. The
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coupling between the two models is given by the equation:

𝑍
(𝑛)
𝑖,𝑟 =

𝑌
(𝑛)
𝑖,𝑟∑︁
𝑗=1

𝐸𝑗,

where {𝐸𝑗}𝑗⩾1, is a sequence of independent, standard exponential random variables.

The core of our approach involves the thinning of a point process (see Section 5.3
in (Last & Penrose, 2017)). The thinning of a point process 𝜈 with a probability
𝑝 ∈ [0, 1] is an operation where each point of 𝜈 is independently kept with probability
𝑝 and removed with probability 1 − 𝑝. We denote the resulting thinned process as
𝑇𝑝𝜈 = 𝑝⊙ 𝜈.

Our investigation of the joint asymptotics relies on constructing a multi-level point
process. First, we fix an integer 𝑟0 ⩾ 1 and introduce a common normalization function
for all levels 𝑟 ∈ {1, ..., 𝑟0}:

𝜓(𝑛)
𝑟0

(𝑥) =
𝑥

𝑛
𝑟0

𝑟0+1

, 𝑥 ∈ R. (1)

Before we construct the point processes, let us define the mode of convergence used
in this paper.

A sequence of locally finite measures {𝜇𝑛} on R is said to converge vaguely to a

measure 𝜇 (denoted 𝜇𝑛
𝑣−→ 𝜇) if for every continuous function 𝑓 : R → [0,∞) with

compact support, the following holds:∫︁
R
𝑓(𝑥)𝑑𝜇𝑛(𝑥) →

∫︁
R
𝑓(𝑥)𝑑𝜇(𝑥).

The convergence of point processes in this paper, denoted by
𝑣𝑑−→, is understood as the

convergence in distribution with respect to the topology of vague convergence.

Using this, for each level 𝑟, we construct a single-level point process 𝜈
(𝑛)
𝑟 from the

Poissonized variables:

𝜈(𝑛)𝑟 =
𝑛∑︁
𝑖=1

𝛿
𝜓
(𝑛)
𝑟0 (𝑍

(𝑛)
𝑖,𝑟 )
,

where 𝛿𝑎 stands for the unit mass at 𝑎.

Next, we introduce the thinning probability 𝑝
(𝑛)
𝑟 = 𝑛−

𝑟0−𝑟
𝑟0+1 for each level 𝑟. The

main object of our study is the thinned multi-level point process 𝐻
(𝑛)
thin on the space

X𝑟0 =
⋃︀𝑟0
𝑟=1{𝑟} × R. It is defined as the superposition of the individually thinned

single-level processes:

𝐻
(𝑛)
thin

(︃
𝑟0⋃︁
𝑟=1

{𝑟} ×𝐵𝑟

)︃
=

𝑟0∑︁
𝑟=1

𝑇
𝑝
(𝑛)
𝑟
𝜈(𝑛)𝑟 (𝐵𝑟), (2)

where 𝐵𝑟 are Borel sets and 𝑇𝑝(·) denotes the thinning operation.
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3 Main result

The main theoretical result of this paper establishes the vague convergence of the

thinned multi-level point process 𝐻
(𝑛)
thin, defined in (2), to a limiting Poisson process.

The theorem is stated as follows.

Theorem 3.1. Let 𝐻 be a Poisson point process on the space X𝑟0 with the intensity

measure 𝜆 given by

𝜆

(︃
𝑟0⋃︁
𝑟=1

{𝑟} ×𝐵𝑟

)︃
=

𝑟0∑︁
𝑟=1

1

𝑟!

∫︁
𝐵𝑟

𝑥𝑟 · I{𝑥 ⩾ 0}𝑑𝑥, 𝐵𝑟 ∈ ℬ(R).

Then, as 𝑛 → ∞, the thinned multi-level process converges vaguely in distribution to

𝐻:

𝐻
(𝑛)
thin

𝑣𝑑−→ 𝐻.

Remark 3.2. The limiting process 𝐻 has mutually independent levels, a consequence
of the superposition theorem for Poisson processes (see, e.g., Theorem 3.3 in (Last &
Penrose, 2017)). Furthermore, each 𝑟-th level has a clear interpretation (see Remark
3.2 in (Ilienko, 2019) for a similar interpretation): it is equal in distribution to a
standard unit-rate Poisson process on R after applying the non-linear transformation
ℎ𝑟(𝑥) = ((𝑟 + 1)! · 𝑥) 1

𝑟+1 . This follows from the transformation theorem for Poisson
processes (see, e.g., Theorem 5.1 in (Last & Penrose, 2017)).

Proof of Theorem 3.1. Our proof is based on a classic criterion for the convergence of

point processes. To establish the vague convergence in distribution 𝐻
(𝑛)
thin

𝑣𝑑−→ 𝐻, it is
sufficient to show that the following two conditions hold for any set 𝑈 from a dissecting
ring that generates the Borel 𝜎-algebra on X𝑟0 (see, e.g., p. 24 in (Kallenberg, 2017)).
We will verify them for sets of the form 𝑈 =

⋃︀𝑟0
𝑟=1 ({𝑟} ×𝐵𝑟), where each 𝐵𝑟 is a

finite union of disjoint bounded intervals, which form such a ring:

(i) lim𝑛→∞ P{𝐻(𝑛)
thin(𝑈) = 0} = P{𝐻(𝑈) = 0};

(ii) lim𝑛→∞ E𝐻(𝑛)
thin(𝑈) = E𝐻(𝑈).

We begin by proving condition (i). The event that the process 𝐻
(𝑛)
thin has no points

in 𝑈 can be written as:

P{𝐻(𝑛)
thin(𝑈) = 0} = P

{︃
𝐻

(𝑛)
thin

(︃
𝑟0⋃︁
𝑟=1

{𝑟} ×𝐵𝑟

)︃
= 0

}︃
= P

{︃
𝑟0∑︁
𝑟=1

𝑇
𝑝
(𝑛)
𝑟
𝜈(𝑛)𝑟 (𝐵𝑟) = 0

}︃
= P{𝑇

𝑝
(𝑛)
𝑟
𝜈(𝑛)𝑟 (𝐵𝑟) = 0 ∀𝑟 = 1, ..., 𝑟0}.
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First, for any 1 ⩽ 𝑟1 < 𝑟2 < · · · < 𝑟𝑚 ⩽ 𝑟0, let us define the joint probability for a
single class 𝑖:

𝑃 (𝑛)
𝑟1,...,𝑟𝑚

= P
{︁
𝜓(𝑛)
𝑟0

(𝑍
(𝑛)
𝑖,𝑟1

) ∈ 𝐵𝑟1, ..., 𝜓
(𝑛)
𝑟0

(𝑍
(𝑛)
𝑖,𝑟𝑚

) ∈ 𝐵𝑟𝑚

}︁
.

This probability does not depend on the index 𝑖, since the random variables 𝑍
(𝑛)
𝑖,𝑟 are

independent and identically distributed for different 𝑖.
Using the independence of the classes and the inclusion-exclusion principle, the

void probability is given by:

P{𝐻(𝑛)
thin(𝑈) = 0} =

(︃
1−

∑︁
1⩽𝑟1⩽𝑟0

𝑛−
𝑟0−𝑟1
𝑟0+1 · 𝑃 (𝑛)

𝑟1
+

∑︁
1⩽𝑟1<𝑟2⩽𝑟0

𝑛−
2𝑟0−𝑟1−𝑟2

𝑟0+1 · 𝑃 (𝑛)
𝑟1,𝑟2

− . . .

+(−1)𝑟0𝑛−
𝑟20−𝑟1−𝑟2−···−𝑟0

𝑟0+1 · 𝑃 (𝑛)
1,...,𝑟0

)︂𝑛
.

To find the limit of this expression, we analyze its logarithm. Since the sum in-
side the parenthesis will be shown to vanish as 𝑛 → ∞, we can use the asymptotic
equivalence ln(1 + 𝛼) ∼ 𝛼, 𝛼 → 0. This yields:

lim
𝑛→∞

lnP{𝐻(𝑛)
thin(𝑈) = 0}

= −
∑︁

1⩽𝑟1⩽𝑟0

lim
𝑛→∞

(︁
𝑛 · 𝑛−

𝑟0−𝑟1
𝑟0+1 · 𝑃 (𝑛)

𝑟1

)︁
+

∑︁
1⩽𝑟1<𝑟2⩽𝑠

lim
𝑛→∞

(︁
𝑛 · 𝑛−

2𝑟0−𝑟1−𝑟2
𝑟0+1 · 𝑃 (𝑛)

𝑟1,𝑟2

)︁
− . . .

+ (−1)𝑟0 lim
𝑛→∞

(︂
𝑛 · 𝑛−

𝑟20−𝑟1−𝑟2−···−𝑟0
𝑟0+1 · 𝑃 (𝑛)

1,...,𝑟0

)︂
.

To prove condition (i), it is therefore sufficient to show that the limit in the first sum
equals 1

𝑟1!

∫︀
𝐵𝑟1

𝑥𝑟1 · I{𝑥 ⩾ 0}𝑑𝑥, while the limit in the second sum vanishes. Since all

subsequent sums are bounded by the second, this will establish the required statement.

Since the increments of the underlying gamma process, 𝑍
(𝑛)
𝑖,2 −𝑍

(𝑛)
𝑖,1 , ..., 𝑍

(𝑛)
𝑖,𝑟0

−𝑍(𝑛)
𝑖,𝑟0−1,

are independent Exp
(︀
1
𝑛

)︀
random variables, the density 𝑓

(𝑛)
𝑟1 (𝑥) of 𝜓

(𝑛)
𝑟0 (𝑍

(𝑛)
𝑖,𝑟1

) and the

joint density 𝑓
(𝑛)
𝑟1,𝑟2(𝑥, 𝑦) of (𝜓

(𝑛)
𝑟0 (𝑍

(𝑛)
𝑖,𝑟1

), 𝜓
(𝑛)
𝑟0 (𝑍

(𝑛)
𝑖,𝑟2

)), respectively, can be derived using
a standard change of variables. They are given by:

𝑓 (𝑛)𝑟1
(𝑥) =

1

𝑟1!𝑛
𝑟1+1
𝑟0+1

· 𝑥𝑟1 · exp
(︂
− 𝑥

𝑛
1

𝑟0+1

)︂
I{𝑥 ⩾ 0},

𝑓 (𝑛)𝑟1,𝑟2
(𝑥, 𝑦) =

𝑛−
𝑟2+1
𝑟0+1

𝑟1!(𝑟2 − 𝑟1 − 1)!
· 𝑥𝑟1 · (𝑦 − 𝑥)𝑟2−𝑟1−1 · exp

(︂
− 𝑦

𝑛
1

𝑟0+1

)︂
I{0 ⩽ 𝑥 ⩽ 𝑦}.
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We now use the derived densities to compute the limits required to prove condition
(i).

For the terms in the first sum, after substituting the expression for 𝑓
(𝑛)
𝑟1 (𝑥) and

canceling the powers of 𝑛, we get:

lim
𝑛→∞

𝑛 · 𝑛−
𝑟0−𝑟1
𝑟0+1 · 𝑃 (𝑛)

𝑟1
= lim

𝑛→∞

1

𝑟1!

∫︁
𝐵𝑟1

𝑥𝑟1 exp

(︂
− 𝑥

𝑛
1

𝑟0+1

)︂
I{𝑥 ⩾ 0} 𝑑𝑥

=
1

𝑟1!

∫︁
𝐵𝑟1

𝑥𝑟1I{𝑥 ⩾ 0} 𝑑𝑥.

The interchange of the limit and the integral is justified by the dominated convergence
theorem, as 𝐵𝑟1 is a bounded set.

Next, we show that the terms in the second sum vanish. Using the joint density

𝑓
(𝑛)
𝑟1,𝑟2(𝑥, 𝑦), we have:

lim
𝑛→∞

𝑛 · 𝑛−
2𝑟0−𝑟1−𝑟2

𝑟0+1 · 𝑃 (𝑛)
𝑟1,𝑟2

= lim
𝑛→∞

𝑛
𝑟1−𝑟0
𝑟0+1

𝑟1!(𝑟2 − 𝑟1 − 1)!

∫︁∫︁
𝐵𝑟1

×𝐵𝑟2

𝑥𝑟1(𝑦 − 𝑥)𝑟2−𝑟1−1

× exp

(︂
− 𝑦

𝑛
1

𝑟0+1

)︂
I{0 ⩽ 𝑥 ⩽ 𝑦} 𝑑𝑥 𝑑𝑦.

Since 𝑟1 < 𝑟0 , the exponent 𝑟1−𝑟0
𝑟0+1 < 0 is negative. The integral converges to a

finite value as 𝑛 → ∞ by the dominated convergence theorem. Therefore, the entire
expression vanishes. This completes the proof of condition (i).

Finally, we prove condition (ii). By the linearity of expectation and the properties
of the thinning operation, we have:

E𝐻(𝑛)
thin(𝑈) =

𝑟0∑︁
𝑟=1

E
(︁
𝑇
𝑝
(𝑛)
𝑟
𝜈(𝑛)𝑟

)︁
(𝐵𝑟) =

𝑟0∑︁
𝑟=1

𝑝(𝑛)𝑟 E𝜈(𝑛)𝑟 (𝐵𝑟).

Since the process 𝜈
(𝑛)
𝑟 (𝐵𝑟) is a sum of 𝑛 independent and identically distributed indica-

tor variables, it follows a binomial distribution with expectation E𝜈(𝑛)𝑟 (𝐵𝑟) = 𝑛 · 𝑃 (𝑛)
𝑟 .

Therefore,

lim
𝑛→∞

E𝐻(𝑛)
thin(𝑈) = lim

𝑛→∞

𝑟0∑︁
𝑟=1

𝑛 · 𝑛−
𝑟0−𝑟
𝑟0+1 · 𝑃 (𝑛)

𝑟 =

𝑟0∑︁
𝑟=1

1

𝑟!

∫︁
𝐵𝑟

𝑥𝑟I{𝑥 ⩾ 0}𝑑𝑥 = E𝐻(𝑈).

The limit of each term in the sum was established during the proof of condition (i).
Since both conditions of the convergence criterion are satisfied, the proof of Theorem
3.1 is complete.
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4 Application of the main result

As an application of the convergence established in Theorem 3.1, we can now derive
the joint limiting distribution for a key functional of the process. We will investigate
the number of classes that have reached completion level 𝑟 + 1 by a random time,
which is defined as the moment the 𝑚-th class completes a higher level, 𝑟0 + 1.

Formally, for a fixed level 𝑟0 ⩾ 1 and a rank 𝑚 ⩾ 1, let 𝑍
(𝑛)
(𝑚),𝑟0

denote the 𝑚-

th order statistic among the completion times {𝑍(𝑛)
𝑖,𝑟0

}𝑛𝑖=1. We are interested in the
asymptotic behavior of the random vector of counts:

𝑄(𝑛)
𝑟,𝑚 = card{𝑖 : 𝑍(𝑛)

𝑖,𝑟 < 𝑍
(𝑛)
(𝑚),𝑟0

}, 𝑟 = 1, . . . , 𝑟0 − 1.

The following theorem describes its limiting distribution.

Theorem 4.1. Let 𝐺𝑚 be a random variable with a Gamma distribution, 𝐺𝑚 ∼
Γ(𝑚, 1). Then, as 𝑛 → ∞, the following convergence in distribution holds in the

space R𝑟0−1: (︁
𝑛−

𝑟0−𝑟
𝑟0+1 ·𝑄(𝑛)

𝑟,𝑚, 𝑟 = 1, . . . , 𝑟0 − 1
)︁

𝑑−→

(︃
((𝑟0 + 1)! ·𝐺𝑚)

𝑟+1
𝑟0+1

(𝑟 + 1)!
, 𝑟 = 1, . . . , 𝑟0 − 1

)︃
.

Proof. The proof relies on applying the Continuous Mapping Theorem to the process
convergence from Theorem 3.1 and then using a result that connects the convergence
of thinned random variables to their normalized counterparts.

Let us first define two functionals of the process 𝐻
(𝑛)
thin. Let 𝑇

(𝑛)
𝑟0,𝑚 be the 𝑚-th

point of the process on the fixed level 𝑟0. Since the thinning probability at this level

is 𝑝
(𝑛)
𝑟0 = 𝑛−

𝑟0−𝑟0
𝑟0+1 = 1, this point corresponds to the normalized 𝑚-th order statistic,

𝑇
(𝑛)
𝑟0,𝑚 = 𝜓

(𝑛)
𝑟0 (𝑍

(𝑛)
(𝑚),𝑟0

).

Next, consider the vector with components 𝑉
(𝑛)
𝑟,𝑚 = 𝐻

(𝑛)
thin

(︁
{𝑟} × (0, 𝑇

(𝑛)
𝑟0,𝑚)

)︁
, 𝑟 =

1, . . . , 𝑟0 − 1. By construction, 𝑉
(𝑛)
𝑟,𝑚 is the number of points of the thinned process

𝑇
𝑝
(𝑛)
𝑟
𝜈
(𝑛)
𝑟 on the random interval (0, 𝑇

(𝑛)
𝑟0,𝑚). This means that 𝑉

(𝑛)
𝑟,𝑚 has the same distri-

bution as the thinned version of the original count, 𝑝
(𝑛)
𝑟 ⊙𝑄

(𝑛)
𝑟,𝑚.

By Theorem 3.1 and the Continuous Mapping Theorem (see, e.g., Theorem 4.27

in (Kallenberg, 2017)), the vector of functionals (𝑉
(𝑛)
𝑟,𝑚) converges in distribution to a

limiting vector (𝑉𝑟,𝑚), where 𝑉𝑟,𝑚 = 𝐻
(︁
{𝑟} × (0, 𝑇𝑟0,𝑚)

)︁
and 𝑇𝑟0,𝑚 is the 𝑚-th point

of the limit process 𝐻 on level 𝑟0.
The structure of the limiting process 𝐻 (see Remark 3.2) determines the distri-

bution of this vector. The random time 𝑇𝑟0,𝑚 has the distribution of a transformed
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Gamma variable, 𝑇𝑟0,𝑚
𝑑
= ℎ𝑟0(𝐺𝑚) = ((𝑟0 + 1)! · 𝐺𝑚)

1
𝑟0+1 , where 𝐺𝑚 ∼ Γ(𝑚, 1).

Since the levels of 𝐻 are independent, the limiting counts 𝑉𝑟,𝑚 are conditionally
independent random variables that follow a Poisson distribution with parameter

𝜆𝑟

(︁
(0, 𝑇𝑟0,𝑚)

)︁
=

(𝑇𝑟0,𝑚)𝑟+1

(𝑟+1)! .

Thus, we have established the convergence for the vector of thinned counts:

(𝑝
(𝑛)
1 ⊙𝑄

(𝑛)
1,𝑚, . . . , 𝑝

(𝑛)
𝑟0−1 ⊙𝑄

(𝑛)
𝑟0−1,𝑚)

𝑑−→ (𝑉1,𝑚, . . . , 𝑉𝑟0−1,𝑚),

where the components of the limiting vector have a mixed Poisson distribution, which
can be represented as

𝑉𝑟,𝑚 ∼ 𝑁𝑟

(︃
((𝑟0 + 1)! ·𝐺𝑚)

𝑟+1
𝑟0+1

(𝑟 + 1)!

)︃
,

with 𝑁𝑟 being independent unit-rate Poisson processes.
With the convergence of the thinned counts established, the final step is to invoke

the result that connects this to the convergence of their normalized counterparts (see,
e.g., Theorem 4.1 in (Ilienko, 2020)). Since its technical conditions are satisfied, the
theorem’s application completes the proof of Theorem 4.1.

5 Summary

This paper presents an effective method for analyzing the joint asymptotics in the
generalized birthday problem by constructing a thinned multi-level point process. The
established convergence of this process allows for the derivation of the joint limiting
distribution for key process functionals, such as the number of completion events by a
random time. A natural direction for further research is the extension of these results
to the original, non-poissonized model.
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Анотацiя. У статтi дослiджено спiльну асимптотичну поведiнку характеристик узагальне-
ної задачi про днi народження. Аналiз проведено в рамках пуассонiзованої моделi з використа-
нням апарату багаторiвневих точкових процесiв, що дозволяє уникнути проблеми залежностi,
властивої вихiднiй постановцi задачi. Запропоновано пiдхiд до вивчення спiльних асимптотик,
який полягає в застосуваннi спiльної нормуючої функцiї у поєднаннi з операцiєю прорiдження,
ймовiрнiсть якої залежить вiд дослiджуваного рiвня заповнення.

Основним теоретичним результатом є доведення грубої збiжностi за розподiлом побудо-
ваного таким чином точкового процесу до граничного пуассонiвського процесу, структурною
особливiстю якого є незалежнiсть його рiвнiв. Як застосування цiєї теореми отримано спiльний
граничний розподiл для кiлькостi типiв, що досягли нижчих рiвнiв заповнення до випадкового
моменту, визначеного 𝑚-тим заповненням на вищому рiвнi. Показано, що граничний розподiл
є змiшаним пуассонiвським, де змiшуючою виступає гамма-розподiлена випадкова величина.

Ключовi слова: узагальнена задача про днi народження, багаторiвневий точковий процес,

пуассонiвський процес, пуассонiзацiя, прорiдження, груба збiжнiсть.
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