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Abstract

У роботi розглядається неперервний у часi елементарний квазiчирпований
сигнал, що спостерiгається на фонi адитивного сильно або слабко залежного
гауссiвського випадкового шуму. У якостi оцiнки невiдомих параметрiв цього
сигналу розглядається оцiнка найменших квадратiв (ОНК). Було розглянуто
асимптотичнi властивостi ОНК дослiджуваного сигналу та отримано теореми про
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сильну консистентнiсть та асимптотичну нормальнiсть ОНК невiдомих параметрiв
квазiчирпованого сигналу.

Keywords: гармонiчний сигнал, елементарний чирпований сигнал,
сильно/слабко залежний стацiонарний гауссiвський процес, оцiнка найменших
квадратiв, рiвномiрний закон великих чисел, iнтеграли Френеля, сильна
консистентнiсть, спектральна мiра функцiї регресiї, асимптотична нормальнiсть.
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Вступ

Моделi синусоїдних сигналiв, що спостерiгаються на фонi випадкових шумiв
рiзного походження, широко використовуються в обробцi мовних та музичних
текстiв, у медицинi, зокрема, кардiографiї, сейсмологiї, астрономiї, теорiї
передавання сигналiв, в економiцi та iнших галузях. Синусоїдний сигнал можна
записати у виглядi

𝑋(𝑡) =
𝑀∑︁
𝑗=1

(︀
𝐴0
𝑗 cos(𝜑

0
𝑗𝑡) +𝐵0

𝑗 sin(𝜑
0
𝑗𝑡)
)︀
+ 𝜀(𝑡), 𝑀 ⩾ 1; (1)

𝑡 ∈ N, якщо розглядається модель з дискретним часом, або 𝑡 ∈ R+ =
[0,+∞), якщо модель з неперервним часом спостереження. У запису (1)
синусоїдного сигналу 𝐴0

𝑗 , 𝐵
0
𝑗 є амплiтудами, 𝜑

0
𝑗 є частотами гармонiчних коливань,

а стохастичний процес 𝜀(𝑡), 𝑡 ∈ Z або 𝑡 ∈ R, є випадковим шумом, що маскує
сигнал.

Задача статистичного оцiнювання невiдомих параметрiв 𝐴0
𝑗 , 𝐵

0
𝑗 , 𝜑

0
𝑗 моделi (1)

називається проблемою виявлення прихованих перiодичностей, що має 200-рiчну
iсторiю та величезну математичну та прикладну бiблiографiю. Ми пошлемось
тiльки на роботи (Artis, Hoffmann, Nachane, & Toro, 2004; A.V. Ivanov, 2010; Quinn
& Hannan, 2012; Kundu & Nandi, 2012; A.V. Ivanov, Leonenko, Ruiz-Medina, &
Zhurakovsky, 2015), якi мiстять велику кiлькiсть посилань на публiкацiї з даної
тематики.

Ще однiєю важливою тригонометричною моделлю в обробцi сигналiв є,
так звана модель чирпованого сигналу (chirp signal model). CHIRP – це
абревiатура термiну «Compressed High-Intensity Radiated Pulse», який дослiвно
перекладається як «Стиснутий Високоiнтенсивний Випромiнюваний Iмпульс»,
а адекватно – «Лiнiйна частотна модуляцiя». Крiм цього, англiйське слово
«chirp» перекладається як «щебет». Сигнали такого типу застосовуються
в радiо та ехолокацiї в якостi засобу формування та обробки зондуючого
iмпульсу. Застосування chirp-сигналу (ми будемо говорити «чирпованого
сигналу») дозволяє пiдвищити точнiсть вимiрювань та якiсть в отриманнi
зображення та характеристик зондованого об’єкту.

Чирпований сигнал можна записати у наступному виглядi:

𝑋(𝑡) =
𝑀 ′∑︁
𝑗=1

(︀
𝐶0
𝑗 cos(𝜑

0
𝑗𝑡+ 𝜓0

𝑗 𝑡
2) +𝐷0

𝑗 sin(𝜑
0
𝑗𝑡+ 𝜓0

𝑗 𝑡
2)
)︀
+ 𝜀(𝑡), 𝑀 ′ ⩾ 1; (2)

час 𝑡, як i в моделi (1), може бути дискретним або неперервним. У порiвняннi з
моделлю (1), тут присутнi додатковi параметри 𝜓0

𝑗 , якi в англомовнiй лiтературi
називаються chirp rates або frequency rates. Цi параметри контролюють швидкiсть
зростання початкових частот коливань 𝜑0𝑗 .
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Для дискретного часу 𝑡 та випадкового шуму, який є лiнiйним часовим рядом
типу 𝑀𝐴(∞)-процесу, за останнi 20 рокiв отримано багато результатiв щодо
консистентностi та асимптотичної нормальностi оцiнки найменших квадратiв
(ОНК) та деяких iнших оцiнок параметрiв сигналу (2). Серед великої кiлькостi
робiт на цю тему вкажемо на публiкацiї (Nandi & Kundu, 2004, 2020; Kundu &
Nandi, 2008, 2021; Lahiri, 2011; Lahiri, Kundu, & Mitra, 2015).

Для неперервного часу 𝑡 та випадкового шуму, який є гауссiвським
стацiонарним процесом з сильною або слабкою залежнiстю, сильну
консистентнiсть та асимптотичну нормальнiсть ОНК параметрiв моделi (2)
доведено у роботах (A. Ivanov & Hladun, 2023, 2024).

У роботi (Grover, Kundu, & Mitra, 2021) розглянуто властивостi ОНК
параметрiв дискретної моделi сигналу, який займає промiжне положення мiж
моделями сигналiв (1) та (2). Автори цiєї роботи називають модель такого
сигналу «chirp-like model», а ми будемо називати такий сигнал квазiчирпованим.
Математичний запис квазiчирпованого сигналу має вигляд

𝑋(𝑡) =
𝑀∑︁
𝑗=1

(︀
𝐴0
𝑗 cos(𝜑

0
𝑗𝑡) +𝐵0

𝑗 sin(𝜑
0
𝑗𝑡)
)︀
+

𝑀 ′∑︁
𝑘=1

(︀
𝐶0
𝑘 cos(𝜓

0
𝑘𝑡

2) +𝐷0
𝑘 sin(𝜓

0
𝑘𝑡

2)
)︀
+ 𝜀(𝑡),

(3)
𝑀 , 𝑀 ′ ⩾ 1, де 𝐴0

𝑗 , 𝐵
0
𝑗 , 𝐶

0
𝑘 , 𝐷

0
𝑘 – амплiтуди, 𝜑

0
𝑗 – частоти, 𝜓

0
𝑘 – frequency rates, якi

ми назвемо темпами частот.

Такий вибiр моделi автори вказаної роботи зробили завдяки наступним
обставинам. По-перше, стверджується, що модель (3) демонструє такий же тип
поведiнки, як i модель (2), та здатна моделювати той самий фiзичний ефект. По-
друге, модель (3) не тiльки є альтернативною до моделi (2), але її також можна
розглядати як узагальнення моделi (1), якщо покласти 𝐶𝑘 = 𝐷𝑘 = 0, 𝑘 = 1,𝑀 ′.

Кожний доданок 1-ої суми моделi (3) є звичайним гармонiчним коливанням,
а кожний доданок 2-ої суми моделi (3) може сам по собi входити у, так звану
елементарну чирповану модель сигналу

𝑋(𝑡) = 𝐶0 cos(𝜓0𝑡2) +𝐷0 sin(𝜓0𝑡2) + 𝜀(𝑡), (4)

яка розглядалась у роботах (Casazza & Fickus, 2006; Mboup & Adal, 2012).

Задача вивчення статистичних властивостей ОНК параметрiв моделi (3) з
довiльними 𝑀 , 𝑀 ′ > 1, є вельми складною, i тому в данiй роботi ми розглянемо
задачу оцiнювання параметрiв елементарної квазiчирпованої моделi (3) з 𝑀 =
𝑀 ′ = 1. Далi буде видно, що i така задача не є простою.
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1 Постановка задачi

Нехай спостерiгається стохастичний процес

𝑋(𝑡) = 𝑔(𝑡, 𝜃0) + 𝜀(𝑡), 𝑡 ∈ R+, (5)

де 𝑔 є сумою гармонiчного коливання та елементарної чирпованої частини, тобто

𝑔(𝑡, 𝜃0) = 𝐴0 cos(𝜑0𝑡) +𝐵0 sin(𝜑0𝑡) + 𝐶0 cos(𝜓0𝑡2) +𝐷0 sin(𝜓0𝑡2), (6)

𝜃0 =
(︀
𝜃01, 𝜃

0
2, 𝜃

0
3, 𝜃

0
4, 𝜃

0
5, 𝜃

0
6

)︀*
=
(︀
𝐴0, 𝐵0, 𝜑0, 𝐶0, 𝐷0, 𝜓0

)︀*
, (7)

де "*" є знаком транспонування, (𝐴0)2+(𝐵0)2 > 0, (𝐶0)2+(𝐷0)2 > 0; 𝜀 = {𝜀(𝑡), 𝑡 ∈
R}, є випадковим шумом, визначеним на ймовiрнiсному просторi (Ω,ℱ , 𝑃 ).

Припустимо, що
A1. 𝜀 – вибiрково неперервний стацiонарний гауссiвський стохастичний процес з
нульовим середнiм та коварiацiйною функцiєю 𝐵(𝑡) = 𝐸𝜀(𝑡)𝜀(0), що задовольняє
однiй з умов:

(i) 𝐵(𝑡) = 𝐿(|𝑡|)|𝑡|−𝛼, 𝛼 ∈ (0, 1), де 𝐿 – неспадна повiльно змiнна на
нескiнченностi функцiя;

(ii) 𝐵(·) ∈ 𝐿1(R).

Припустимо також, що iстиннi значення амплiтуд (𝐴0, 𝐵0, 𝐶0, 𝐷0) є рiзними
числами, а iстиннi значення кутової частоти та темпу частоти (𝜑0, 𝜓0) є рiзними
додатними числами. Для деяких фiксованих чисел 0 < 𝜑 < 𝜑 < +∞; 0 < 𝜓 <

𝜓 < +∞, нехай 𝜑0 ∈ (𝜑, 𝜑), 𝜓0 ∈ (𝜓, 𝜓).
Означення 1. Будь-який випадковий вектор

𝜃𝑇 = (𝐴𝑇 , 𝐵𝑇 , 𝜑𝑇 , 𝐶𝑇 , 𝐷𝑇 , 𝜓𝑇 ), (8)

що мiнiмiзує значення функцiоналу

𝑄𝑇 (𝜃) =
1

𝑇

∫︁ 𝑇

0

[𝑋(𝑡)− 𝑔(𝑡, 𝜃)]2 𝑑𝑡 (9)

на параметричнiй множинi Θ ⊂ R6, де амплiтуди (𝐴,𝐵,𝐶,𝐷) можуть приймати
будь-якi значення, а параметри (𝜑, 𝜓) приймають значення у множинi [𝜑, 𝜑] ×
[𝜓, 𝜓], називається ОНК параметра 𝜃0.

У роздiлi 2 ми доводимо, що так означена ОНК 𝜃𝑇 векторного параметра 𝜃0

моделi (5)-(7) є сильно консистентною у деякому сенсi (теорема 1). У роздiлi
3 ми покажемо, що ОНК 𝜃𝑇 є асимптотично нормальною оцiнкою параметра 𝜃0

(теорема 2), причому доведення цього факту є достатньо громiздким та вимагає
додаткових умов, яким повинен задовольняти стохастичний процес 𝜀.

21



В.В. Гладун, О.В. Iванов, А.М. Кругол (2025)

2 Сильна консистентнiсть ОНК параметрiв

квазiчирпованого сигналу

Сформулюємо теорему, яка є основним результатом цього роздiлу.
Теорема 1. Нехай виконується умова A1. Тодi ОНК 𝜃𝑇 є сильно

консистентною оцiнкою параметра 𝜃0 у тому сенсi, що 𝐴𝑇 → 𝐴0, 𝐵𝑇 → 𝐵0,
𝑇
(︀
𝜑𝑇 − 𝜑0

)︀
→ 0, 𝐶𝑇 → 𝐶0, 𝐷𝑇 → 𝐷0, 𝑇 2

(︀
𝜓𝑇 − 𝜓0

)︀
→ 0 м.н. при 𝑇 → ∞.

Для доведення теореми 1 нам знадобляться двi леми.
Лема 1. Нехай 𝛼𝑇 , 𝛽𝑇 , 𝑇 > 0 – деякi функцiї, такi, що 𝛼𝑇 → ∞, 𝛽𝑇 → ∞ при

𝑇 → ∞. Тодi при 𝑇 → ∞

1)
∫︀ 1

0

cos
sin

(𝛼𝑇 𝑡)𝑑𝑡→ 0; 2)
∫︀ 1

0

cos
sin

(𝛽𝑇 𝑡
2)𝑑𝑡→ 0;

3)
∫︀ 1

0

cos
sin

(𝛼𝑇 𝑡)
cos
sin

(𝛽𝑇 𝑡
2)𝑑𝑡→ 0.

Доведення. Маємо

1)
⃒⃒⃒∫︀ 1

0 sin(𝛼𝑇 𝑡)𝑑𝑡
⃒⃒⃒
=
⃒⃒⃒
1−cos(𝛼𝑇 )

𝛼𝑇

⃒⃒⃒
⩽ 2

|𝛼𝑇 | → 0 при 𝑇 → ∞;⃒⃒⃒∫︀ 1

0 cos(𝛼𝑇 𝑡)𝑑𝑡
⃒⃒⃒
=
⃒⃒⃒
sin(𝛼𝑇 )
𝛼𝑇

⃒⃒⃒
⩽ 1

|𝛼𝑇 | → 0 при 𝑇 → ∞.

2) З властивостей iнтегралiв Френеля 𝐶(𝑥) =
∫︀ 𝑥
0 cos(𝑡2)𝑑𝑡, 𝑆(𝑥) =

∫︀ 𝑥
0 sin(𝑡2)𝑑𝑡,

𝑥 ∈ R, випливає, що⃒⃒⃒⃒∫︀ 1

0

cos
sin

(𝛽𝑇 𝑡
2)𝑑𝑡

⃒⃒⃒⃒
=
∫︀ 1

0

cos
sin

(|𝛽𝑇 |𝑡2)𝑑𝑡 = 1√
|𝛽𝑇 |

⃒⃒⃒⃒∫︀√|𝛽𝑇 |
0

cos
sin

(𝑡2)𝑑𝑡

⃒⃒⃒⃒
⩽ 1√

|𝛽𝑇 |
→ 0

при 𝑇 → ∞.

3) Оскiльки усi чотири випадки у 3) доводяться аналогiчно, запишемо
доведення одного з них.⃒⃒⃒∫︀ 1

0 cos(𝛼𝑇 𝑡) cos(𝛽𝑇 𝑡
2)𝑑𝑡

⃒⃒⃒
⩽ 1

2

⃒⃒⃒∫︀ 1

0 cos(𝛼𝑇 𝑡+ 𝛽𝑇 𝑡
2)𝑑𝑡

⃒⃒⃒
+ 1

2

⃒⃒⃒∫︀ 1

0 cos(𝛼𝑇 𝑡− 𝛽𝑇 𝑡
2)𝑑𝑡

⃒⃒⃒
⩽ 4√

|𝛽𝑇 |
→ 0, при 𝑇 → ∞, де остання нерiвнiсть є результатом леми 1 у

роботi (A. Ivanov & Hladun, 2023).

Лема 2. Якщо виконується умова A1, то при 𝑇 → ∞

sup
𝜑∈R

⃒⃒⃒⃒
1

𝑇

∫︁ 𝑇

0

cos
sin

(𝜑𝑡)𝜀(𝑡)𝑑𝑡

⃒⃒⃒⃒
→ 0 м.н. (10)

sup
𝜓∈R

⃒⃒⃒⃒
1

𝑇

∫︁ 𝑇

0

cos
sin

(𝜓𝑡2)𝜀(𝑡)𝑑𝑡

⃒⃒⃒⃒
→ 0 м.н. (11)
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Доведення. У роботi (A. Ivanov & Hladun, 2023) було доведено, що

sup
𝜑,𝜓∈R

⃒⃒⃒⃒
1

𝑇

∫︁ 𝑇

0

cos
sin

(𝜑𝑡+ 𝜓𝑡2)𝜀(𝑡)𝑑𝑡

⃒⃒⃒⃒
→ 0 м.н. при 𝑇 → ∞. (12)

Збiжностi (10) та (11) є частинними випадками (12), i можуть бути отриманi,
якщо взяти у (12) 𝜑 = 0 або 𝜓 = 0, вiдповiдно.

Доведення теореми 1. Продиференцiюємо функцiонал 𝑄𝑇 (𝜃) за змiнними
𝐴,𝐵,𝐶,𝐷:

𝜕𝑄𝑇 (𝜃𝑇 )

𝜕𝐴
= − 2

𝑇

∫︁ 𝑇

0

[𝑋(𝑡)− 𝑔(𝑡, 𝜃)] cos(𝜑𝑡)𝑑𝑡 = 0;

𝜕𝑄𝑇 (𝜃𝑇 )

𝜕𝐵
= − 2

𝑇

∫︁ 𝑇

0

[𝑋(𝑡)− 𝑔(𝑡, 𝜃)] sin(𝜑𝑡)𝑑𝑡 = 0; (13)

𝜕𝑄𝑇 (𝜃𝑇 )

𝜕𝐶
= − 2

𝑇

∫︁ 𝑇

0

[𝑋(𝑡)− 𝑔(𝑡, 𝜃)] cos(𝜓𝑡2)𝑑𝑡 = 0;

𝜕𝑄𝑇 (𝜃𝑇 )

𝜕𝐷
= − 2

𝑇

∫︁ 𝑇

0

[𝑋(𝑡)− 𝑔(𝑡, 𝜃)] sin(𝜓𝑡2)𝑑𝑡 = 0.

Таким чином, отримуємо систему лiнiйних рiвнянь для оцiнок
(𝐴𝑇 , 𝐵𝑇 , 𝐶𝑇 , 𝐷𝑇 ), що є пiдсистемою системи нормальних рiвнянь для ОНК
𝜃𝑇 :

⎡⎢⎢⎣
< cos(𝜑𝑇 𝑡), cos(𝜑𝑇 𝑡) > < sin(𝜑𝑇 𝑡), cos(𝜑𝑇 𝑡) > < cos(𝜓𝑇 𝑡

2), cos(𝜑𝑇 𝑡) > < sin(𝜓𝑇 𝑡
2), cos(𝜑𝑇 𝑡) >

< cos(𝜑𝑇 𝑡), sin(𝜑𝑇 𝑡) > < sin(𝜑𝑇 𝑡), sin(𝜑𝑇 𝑡) > < cos(𝜓𝑇 𝑡
2), sin(𝜑𝑇 𝑡) > < sin(𝜓𝑇 𝑡

2), sin(𝜑𝑇 𝑡) >
< cos(𝜑𝑇 𝑡), cos(𝜓𝑇 𝑡

2) > < sin(𝜑𝑇 𝑡), cos(𝜓𝑇 𝑡
2) > < cos(𝜓𝑇 𝑡

2), cos(𝜓𝑇 𝑡
2) > < sin(𝜓𝑇 𝑡

2), cos(𝜓𝑇 𝑡
2) >

< 𝑐𝑜𝑠(𝜑𝑇 𝑡), sin(𝜓𝑇 𝑡
2) > < sin(𝜑𝑇 𝑡), sin(𝜓𝑇 𝑡

2) > < cos(𝜓𝑇 𝑡
2), sin(𝜓𝑇 𝑡

2) > < sin(𝜓𝑇 𝑡
2), sin(𝜓𝑇 𝑡

2) >

⎤⎥⎥⎦

×

⎡⎢⎢⎣
𝐴𝑇

𝐵𝑇

𝐶𝑇
𝐷𝑇

⎤⎥⎥⎦ =

⎡⎢⎢⎣
< 𝑋(𝑇 ), cos(𝜑𝑇 𝑡) >
< 𝑋(𝑇 ), sin(𝜑𝑇 𝑡) >
< 𝑋(𝑇 ), cos(𝜓𝑇 𝑡

2) >
< 𝑋(𝑇 ), sin(𝜓𝑇 𝑡

2) >

⎤⎥⎥⎦ =𝑀𝑇𝑌𝑇 = 𝑋𝑇 , (14)

де використано позначення < 𝑢(𝑡), 𝑣(𝑡) >= 1
𝑇

∫︀ 𝑇
0 𝑢(𝑡)𝑣(𝑡)𝑑𝑡.

Iз леми 1 випливає, що

𝑀𝑇 =

⎡⎢⎢⎣
1
2 + 𝑜𝑇 (1) 𝑜𝑇 (1) 𝑜𝑇 (1) 𝑜𝑇 (1)
𝑜𝑇 (1)

1
2 + 𝑜𝑇 (1) 𝑜𝑇 (1) 𝑜𝑇 (1)

𝑜𝑇 (1) 𝑜𝑇 (1)
1
2 + 𝑜𝑇 (1) 𝑜𝑇 (1)

𝑜𝑇 (1) 𝑜𝑇 (1) 𝑜𝑇 (1)
1
2 + 𝑜𝑇 (1)

⎤⎥⎥⎦ , (15)

де символом 𝑜𝑇 (1) позначено випадковi процеси, що прямують до нуля м.н. при
𝑇 → ∞.
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Розглянемо далi координати вектора𝑋𝑇 . Будемо використовувати позначення

𝑎𝑇 =
sin𝑇 (𝜑0 − 𝜑𝑇 )

𝑇 (𝜑0 − 𝜑𝑇 )
, 𝑏𝑇 =

1− cos𝑇 (𝜑0 − 𝜑𝑇 )

𝑇 (𝜑0 − 𝜑𝑇 )
,

𝑥𝑇 =

∫︁ 1

0

cos
(︀
𝑇 2(𝜓0 − 𝜓𝑇 )𝑡

2
)︀
𝑑𝑡, 𝑦𝑇 =

∫︁ 1

0

sin
(︀
𝑇 2(𝜓0 − 𝜓𝑇 )𝑡

2
)︀
𝑑𝑡. (16)

Маємо

𝑋
(1)
𝑇 =< 𝜀(𝑡), cos(𝜑𝑇 𝑡) > +𝐴0 < cos(𝜑0𝑡), cos(𝜑𝑇 𝑡) >

+𝐵0 < sin(𝜑0𝑡), cos(𝜑𝑇 𝑡) > +𝐶0 < cos(𝜓0𝑡2), cos(𝜑𝑇 𝑡) >

+𝐷0 < sin(𝜓0𝑡2), cos(𝜑𝑇 𝑡) > . (17)

Перший доданок у (17) прямує до нуля м.н. при 𝑇 → ∞ за лемою 2. Далi, з
леми 1 випливає, що

< cos(𝜑0𝑡), cos(𝜑𝑇 𝑡) >=
1

2𝑇

∫︁ 𝑇

0

cos
(︀
(𝜑0 − 𝜑𝑇 )𝑡

)︀
𝑑𝑡

+
1

2𝑇

∫︁ 𝑇

0

cos
(︀
(𝜑0 + 𝜑𝑇 )𝑡

)︀
𝑑𝑡 =

𝑎𝑇
2

+ 𝑜𝑇 (1);

< sin(𝜑0𝑡), cos(𝜑𝑇 𝑡) >=
1

2𝑇

∫︁ 𝑇

0

sin
(︀
(𝜑0 − 𝜑𝑇 )𝑡

)︀
𝑑𝑡

+
1

2𝑇

∫︁ 𝑇

0

sin
(︀
(𝜑0 + 𝜑𝑇 )𝑡

)︀
𝑑𝑡 =

𝑏𝑇
2

+ 𝑜𝑇 (1);

< cos(𝜓0𝑡2), cos(𝜑𝑇 𝑡) >= 𝑜𝑇 (1); < sin(𝜓0𝑡2), cos(𝜑𝑇 𝑡) >= 𝑜𝑇 (1). (18)

Таким чином,

𝑋
(1)
𝑇 =

𝐴0

2
𝑎𝑇 +

𝐵0

2
𝑏𝑇 + 𝑜𝑇 (1). (19)

Аналогiчно,

𝑋
(2)
𝑇 =

𝐵0

2
𝑎𝑇 − 𝐴0

2
𝑏𝑇 + 𝑜𝑇 (1). (20)

Крiм цього,

𝑋
(3)
𝑇 =< 𝜀(𝑡), cos(𝜓𝑇 𝑡

2) > +𝐴0 < cos(𝜑0𝑡), cos(𝜓𝑇 𝑡
2) >

+𝐵0 < sin(𝜑0𝑡), cos(𝜓𝑇 𝑡
2) > +𝐶0 < cos(𝜓0𝑡2), cos(𝜓𝑇 𝑡

2) >

+𝐷0 < sin(𝜓0𝑡2), cos(𝜓𝑇 𝑡
2) > . (21)
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Перший доданок у (21) прямує до нуля м.н. при 𝑇 → ∞ за лемою 2. З леми 1
випливає, що

< cos(𝜓0𝑡2), cos(𝜓𝑇 𝑡
2) >=

1

2𝑇

∫︁ 𝑇

0

cos
(︀
(𝜓0 − 𝜓𝑇 )𝑡

2
)︀
𝑑𝑡

+
1

2𝑇

∫︁ 𝑇

0

cos
(︀
(𝜓0 + 𝜓𝑇 )𝑡

2
)︀
𝑑𝑡 =

𝑥𝑇
2

+ 𝑜𝑇 (1);

< sin(𝜓0𝑡2), cos(𝜓𝑇 𝑡
2) >=

1

2𝑇

∫︁ 𝑇

0

sin
(︀
(𝜓0 − 𝜓𝑇 )𝑡

2
)︀
𝑑𝑡

+
1

2𝑇

∫︁ 𝑇

0

sin
(︀
(𝜓0 + 𝜓𝑇 )𝑡

2
)︀
𝑑𝑡 =

𝑦𝑇
2

+ 𝑜𝑇 (1);

< cos(𝜑0𝑡), cos(𝜓𝑇 𝑡
2) >= 𝑜𝑇 (1); < sin(𝜑0𝑡), cos(𝜓𝑇 𝑡

2) >= 𝑜𝑇 (1). (22)

З (21) та (22) отримуємо

𝑋
(3)
𝑇 =

𝐶0

2
𝑥𝑇 +

𝐷0

2
𝑦𝑇 + 𝑜𝑇 (1). (23)

Аналогiчно

𝑋
(4)
𝑇 =

𝐷0

2
𝑥𝑇 − 𝐶0

2
𝑦𝑇 + 𝑜𝑇 (1). (24)

Застосовуючи спiввiдношення (15), (19), (20), (23), (24) до системи рiвнянь
(14), отримуємо такi вирази для ОНК амплiтуд:

𝐴𝑇 = 𝐴0𝑎𝑇 +𝐵0𝑏𝑇 + 𝑜𝑇 (1); 𝐵𝑇 = 𝐵0𝑎𝑇 − 𝐴0𝑏𝑇 + 𝑜𝑇 (1);

𝐶𝑇 = 𝐶0𝑥𝑇 +𝐷0𝑦𝑇 + 𝑜𝑇 (1); 𝐷𝑇 = 𝐷0𝑥𝑇 − 𝐶0𝑦𝑇 + 𝑜𝑇 (1). (25)

Оскiльки, |𝑎𝑇 |, |𝑏𝑇 |, |𝑥𝑇 |, |𝑦𝑇 | ⩽ 1, з (25) випливає, що

|𝐴𝑇 | ⩽ |𝐴0|+ |𝐵0|+ 𝑜𝑇 (1); |𝐵𝑇 | ⩽ |𝐴0|+ |𝐵0|+ 𝑜𝑇 (1);

|𝐶𝑇 | ⩽ |𝐶0|+ |𝐷0|+ 𝑜𝑇 (1); |𝐷𝑇 | ⩽ |𝐶0|+ |𝐷0|+ 𝑜𝑇 (1); (26)

Нехай,

𝐺(𝜃1, 𝜃2) =
1

𝑇

∫︁ 𝑇

0

(𝑔(𝑡, 𝜃1)− 𝑔(𝑡, 𝜃2))
2 𝑑𝑡, 𝜃1, 𝜃2 ∈ Θ.

З означення ОНК випливає, що

0 ⩾ 𝑄𝑇 (𝜃𝑇 )−𝑄𝑇 (𝜃
0) = 𝐺(𝜃𝑇 , 𝜃

0) +
2

𝑇

∫︁ 𝑇

0

𝜀(𝑡)
[︀
𝑔(𝑡, 𝜃0)− 𝑔(𝑡, 𝜃𝑇 )

]︀
𝑑𝑡. (27)
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З леми 2 та нерiвностей (26) маємо, що:

2𝑇−1

∫︁ 𝑇

0

𝜀(𝑡)
[︀
𝑔(𝑡, 𝜃0)− 𝑔(𝑡, 𝜃𝑇 )

]︀
𝑑𝑡→ 0 м.н. при 𝑇 → ∞. (28)

Отже, враховуючи (28), з (27) отримуємо

𝐺𝑇 (𝜃𝑇 , 𝜃
0) → 0 м.н. при 𝑇 → ∞. (29)

Перетворимо iнтеграл

𝐺𝑇 (𝜃𝑇 , 𝜃
0) =

1

𝑇

∫︁ 𝑇

0

[𝐴𝑇 cos(𝜑𝑇 𝑡) +𝐵𝑇 sin(𝜑𝑇 𝑡) + 𝐶𝑇 cos(𝜓𝑇 𝑡
2) +𝐷𝑇 sin(𝜓𝑇 𝑡

2)−

− 𝐴0 cos(𝜑0𝑡)−𝐵0 sin(𝜑0𝑡)− 𝐶0 cos(𝜓0𝑡2)−𝐷0 sin(𝜓0𝑡2)]2𝑑𝑡. (30)

Користуючись нерiвностями (26) та лемою 1, отримуємо

𝐺𝑇 (𝜃𝑇 , 𝜃
0) = (𝐴𝑇 )

2 < cos(𝜑𝑇 𝑡), cos(𝜑𝑇 𝑡) > +(𝐵𝑇 )
2 < sin(𝜑𝑇 𝑡), sin(𝜑𝑇 𝑡) >

+ (𝐶𝑇 )
2 < cos(𝜓𝑇 𝑡

2), cos(𝜓𝑇 𝑡
2) > +(𝐷𝑇 )

2 < sin(𝜓𝑇 𝑡
2), sin(𝜓𝑇 𝑡

2) >

− 2𝐴𝑇𝐴
0 < cos(𝜑𝑇 𝑡), cos(𝜑

0𝑡) > −2𝐴𝑇𝐵
0 < cos(𝜑𝑇 𝑡), sin(𝜑

0𝑡) >

− 2𝐵𝑇𝐴
0 < sin(𝜑𝑇 𝑡), cos(𝜑

0𝑡) > −2𝐵𝑇𝐵
0 < sin(𝜑𝑇 𝑡), sin(𝜑

0𝑡) >

− 2𝐶𝑇𝐶
0 < cos(𝜓𝑇 𝑡

2), cos(𝜓0𝑡2) > −2𝐶𝑇𝐷
0 < cos(𝜓𝑇 𝑡

2), sin(𝜓0𝑡2) >

− 2𝐷𝑇𝐶
0 < sin(𝜓𝑇 𝑡

2), cos(𝜓0𝑡2) > −2𝐷𝑇𝐷
0 < sin(𝜓𝑇 𝑡

2), sin(𝜓0𝑡2) > +𝑜𝑇 (1)

=
1

2
[(𝐴𝑇 )

2 + (𝐵𝑇 )
2 + (𝐴0)2 + (𝐵0)2]− [𝐴𝑇𝐴

0 +𝐵𝑇𝐵
0]𝑎𝑇 − [𝐴𝑇𝐵

0 −𝐵𝑇𝐴
0]𝑏𝑇

+
1

2
[(𝐶𝑇 )

2+(𝐷𝑇 )
2+(𝐶0)2+(𝐷0)2]− [𝐶𝑇𝐶

0+𝐷𝑇𝐷
0]𝑥𝑇− [𝐶𝑇𝐷

0−𝐷𝑇𝐶
0]𝑦𝑇+𝑜𝑇 (1).

(31)

Пiдставимо рiвностi (25) у (31):

𝐺𝑇 (𝜃𝑇 , 𝜃
0) =

1

2

(︀
(𝐴0)2 + (𝐵0)2

)︀ (︀
1− 𝑎2𝑇 − 𝑏2𝑇

)︀
+

1

2

(︀
(𝐶0)2 + (𝐷0)2

)︀
(1− 𝑥2𝑇 − 𝑦2𝑇 ) + 𝑜𝑇 (1) → 0 м.н. при 𝑇 → ∞. (32)

Оскiльки, 𝑎2𝑇 + 𝑏2𝑇 ⩽ 1, 𝑥2𝑇 + 𝑦2𝑇 ⩽ 1, то (29) прямуватиме до нуля тодi i тiльки
тодi, коли

𝑎2𝑇 + 𝑏2𝑇 → 1, 𝑥2𝑇 + 𝑦2𝑇 → 1 м.н. при 𝑇 → ∞. (33)

Дослiдимо детальнiше кожну з величин у (33). Отримуємо

𝑎2𝑇 + 𝑏2𝑇 =

(︂
sin𝑇 (𝜑0 − 𝜑𝑇 )

𝑇 (𝜑0 − 𝜑𝑇 )

)︂2

+

(︂
1− cos𝑇 (𝜑0 − 𝜑𝑇 )

𝑇 (𝜑0 − 𝜑𝑇 )

)︂2

=

(︃
sin 𝑇

2 (𝜑
0 − 𝜑𝑇 )

𝑇
2 (𝜑

0 − 𝜑𝑇 )

)︃2

.
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Отже, для того, щоб виконувалось 𝑎2𝑇 + 𝑏2𝑇 → 1, необхiдно i достатньо, щоб

𝑇 (𝜑0 − 𝜑𝑇 ) → 0 м.н. при 𝑇 → ∞. (34)

Маємо далi

𝑥2𝑇 + 𝑦2𝑇 =

(︂∫︁ 1

0

cos(𝜇𝑇 𝑡
2)𝑑𝑡

)︂2

+

(︂∫︁ 1

0

sin(𝜇𝑇 𝑡
2)𝑑𝑡

)︂2

, де 𝜇𝑇 = 𝑇 2(𝜓0 − 𝜓𝑇 ). (35)

Нехай Ω0 ∈ Ω, 𝑃 (Ω0) = 1, є деякою випадковою подiєю, для якої справедливий
результат 𝑥2𝑇 + 𝑦2𝑇 → 1 м.н. при 𝑇 → ∞. Якщо для будь-якої елементарної подiї
𝜔 ∈ Ω0

𝜇𝑇 → 0 м.н. при 𝑇 → ∞, (36)

тодi величина 𝑥2𝑇 + 𝑦2𝑇 прямуватиме до 1 м.н. при 𝑇 → ∞ за т. Лебега про
мажоровану збiжнiсть.

Припустимо, що (36) не виконується для деякого 𝜔0 ∈ Ω0 i розглянемо усi
можливi варiанти поведiнки випадкової величини 𝜇𝑇 .

Нехай, для деякого 𝜔0 ∈ Ω, 𝜇𝑇 ↛ 0 при 𝑇 → ∞. Тодi iснує 𝜀0 > 0 i
послiдовнiсть 𝑇𝑛, 𝑛 ⩾ 1, 𝑇𝑛 → ∞ при 𝑛 → ∞, така, що |𝜇𝑇𝑛| ⩾ 𝜀0, 𝑛 ⩾ 1.
Нехай множина значень {𝜇𝑇𝑛, 𝑛 ⩾ 1} є обмеженою, тодi iснує пiдпослiдовнiсть
{𝑇𝑛𝑘, 𝑘 ⩾ 1} така, що 𝜇𝑇𝑛 → 𝜇 ̸= 0 при 𝑘 → ∞. Якщо ж множина значень
{𝜇𝑇𝑛, 𝑛 ⩾ 1} є необмеженою, тодi для деякої пiдпослiдовностi {𝑇𝑛𝑘, 𝑘 ⩾ 1} 𝜇𝑇𝑛𝑘 →
+∞ або −∞ при 𝑘 → ∞.

Позначимо 𝜇𝑇𝑛𝑘 = 𝜇𝑘, 𝑥𝑇𝑛𝑘 = 𝑥𝑘, 𝑦𝑇𝑛𝑘 = 𝑦𝑘, i, використовуючи попереднi
виклади, визначимо можливi варiанти збiжностi 𝜇𝑘 при 𝑘 → ∞.

(i) 𝜇𝑘 → +∞ або −∞; (ii) 𝜇𝑘 → 𝜇 ̸= 0.

Покажемо, що для варiантiв (i) та (ii)

𝑥2𝑘 + 𝑦2𝑘 ↛ 1 при 𝑚→ ∞. (37)

Справдi,

𝑥2𝑘 + 𝑦2𝑘 =

(︂∫︁ 1

0

cos(𝜇𝑘𝑡
2)𝑑𝑡

)︂2

+

(︂∫︁ 1

0

sin(𝜇𝑘𝑡
2)𝑑𝑡

)︂2

=

(︂∫︁ 1

0

cos(|𝜇𝑘|𝑡2)𝑑𝑡
)︂2

+

(︂∫︁ 1

0

sin(|𝜇𝑘|𝑡2)𝑑𝑡
)︂2

=
1

|𝜇𝑘|

(︃∫︁ √
|𝜇𝑘|

0

cos(𝑠2)𝑑𝑠

)︃2

+
1

|𝜇𝑘|

(︃∫︁ √
|𝜇𝑘|

0

sin(𝑠2)𝑑𝑠

)︃2

⩽
2

|𝜇𝑘|
, (38)

звiдки випливає, що для варiанту (i) виконується (37).
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У випадку (ii) за т. Лебега про мажоровану збiжнiсть та за нерiвнiстю Кошi-
Буняковського матимемо

lim
𝑘→∞

(𝑥2𝑘 + 𝑦2𝑘) =

(︂∫︁ 1

0

cos(𝜇𝑡2)𝑑𝑡

)︂2

+

(︂∫︁ 1

0

sin(𝜇𝑡2)𝑑𝑡

)︂2

⩽ 1, (39)

i рiвнiсть буде досягатися тодi i тiльки тодi, коли для деяких сталих 𝑚1 та 𝑚2

cos(𝜇𝑡2) = 𝑚1, sin(𝜇𝑡
2) = 𝑚2, 𝑡 ∈ [0, 1]. Однак, це неможливо, i тому

lim
𝑘→∞

(𝑥2𝑘 + 𝑦2𝑘) < 1. (40)

Таким чином, отримуємо

𝜇𝑇 = 𝑇 2(𝜓0 − 𝜓𝑇 ) → 0 м.н. при 𝑇 → ∞. (41)

Зi спiввiдношень (25), (34), (41) випливає консистентнiсть оцiнок 𝐴𝑇 , 𝐵𝑇 , 𝐶𝑇 ,
𝐷𝑇 .

3 Асимптотична нормальнiсть ОНК параметрiв

квазiчирпованого сигналу

Зробимо додаткове припущення

A2. (i) Процес 𝜀, що задовольняє умову A1(i), має спектральну щiльнiсть 𝑓(𝜆) =̃︀𝐿(︁ 1
|𝜆|

)︁
|𝜆|𝛼−1, 𝛼 > 1

2 , де
̃︀𝐿 є повiльно змiнною на нескiнченностi функцiєю, i

𝑓 має 4-й спектральний момент.

(ii) Спектральна щiльнiсть процесу 𝜀, що задовольняє умовi A1(ii), має 4-й
спектральний момент.

У роботi (A. Ivanov & Hladun, 2024) наведено приклад одночасного виконання
умов А1 та А2.

У цьому роздiлi отримано другий основний результат роботи.
Теорема 2. Нехай виконуються умови A1 та A2. Тодi нормована ОНК(︁

𝑇
1
2 (𝐴𝑇 −𝐴0), 𝑇

1
2 (𝐵𝑇 −𝐵0), 𝑇

3
2 (𝜑𝑇 − 𝜑0), 𝑇 (𝐶𝑇 −𝐶0), 𝑇 (𝐷𝑇 −𝐷0), 𝑇 3(𝜓𝑇 − 𝜓0)

)︁*
є асимптотично нормальною 𝑁(0,Σ) при 𝑇 → ∞, де Σ є матрицею 6 порядку, що
задана формулами (112)-(114), а також (85), (86) та (81).

Доведенню теореми 2 передують важливi леми, якi будуть сформульованi
пiсля того, як ми їх доведемо.
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Позначимо

𝜕

𝜕𝜃𝑖
𝑔(𝑡, 𝜃) = 𝑔𝑖(𝑡, 𝜃),

𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
𝑔(𝑡, 𝜃) = 𝑔𝑖𝑗(𝑡, 𝜃), 𝑖, 𝑗 = 1, 6. (42)

Запишемо систему нормальних рiвнянь для 𝜃𝑇 :

0 = 𝑄′
𝑇 (𝜃𝑇 ) =

(︂
−2

∫︁ 𝑇

0

[𝑋(𝑡)− 𝑔(𝑡, 𝜃𝑇 )] 𝑔𝑖(𝑡, 𝜃𝑇 )𝑑𝑡

)︂6

𝑖=1

, (43)

де
𝑔1(𝑡, 𝜃) = cos(𝜑𝑡); 𝑔2(𝑡, 𝜃) = sin(𝜑𝑡);

𝑔3(𝑡, 𝜃) = −𝐴𝑡 sin(𝜑𝑡) +𝐵𝑡 cos(𝜑𝑡);

𝑔4(𝑡, 𝜃) = cos(𝜓𝑡2); 𝑔5(𝑡, 𝜃) = sin(𝜓𝑡2);

𝑔6(𝑡, 𝜃) = −𝐶𝑡2 sin(𝜓𝑡2) +𝐷𝑡2 cos(𝜓𝑡2).

Зауваження. У данному роздiлi ми використовуємо таке ж значення 𝑄𝑇 (𝜃), як

i у формулi (9), але без нормувального множника 1
𝑇 .

Розглянемо матрицю Гессе

𝑄′′
𝑇 (𝜃) =

(︂
−2

∫︁ 𝑇

0

[𝑋(𝑡)− 𝑔(𝑡, 𝜃)] 𝑔𝑖𝑗(𝑡, 𝜃)𝑑𝑡+ 2

∫︁ 𝑇

0

𝑔𝑖(𝑡, 𝜃)𝑔𝑗(𝑡, 𝜃)𝑑𝑡

)︂6

𝑖,𝑗=1

(44)

та розклад кожного рядка (44) в ряд Тейлора зi своїм значенням 𝜃 у кожному
рядку:

−1

2
𝑄′
𝑇 (𝜃

0) =
1

2
𝑄′
𝑇 (𝜃𝑇 )−

1

2
𝑄′
𝑇 (𝜃

0) =
1

2
𝑄′′
𝑇 (𝜃)(𝜃𝑇 − 𝜃0). (45)

Введемо дiагональну матрицю

𝑑𝑇 = 𝑑𝑖𝑎𝑔(𝑇
1
2 , 𝑇

1
2 , 𝑇

3
2 , 𝑇

1
2 , 𝑇

1
2 , 𝑇

5
2 ). (46)

Тодi спiввiдношення (45) можна переписати у виглядi

𝑑𝑇 (𝜃𝑇 − 𝜃0) =

(︂
𝑑−1
𝑇 (

1

2
𝑄′′
𝑇 (𝜃))𝑑

−1
𝑇

)︂−1

𝑑−1
𝑇

(︂
1

2
𝑄′
𝑇 (𝜃

0)

)︂
. (47)

Дослiдимо спочатку асимптотичну поведiнку матрицi

𝑑−1
𝑇

(︂
1

2
𝑄′′
𝑇 (𝜃)

)︂
𝑑−1
𝑇 = 𝑑−1

𝑇

(︂∫︁ 𝑇

0

[︀
𝑔(𝑡, 𝜃)− 𝑔(𝑡, 𝜃0)

]︀
𝑔𝑖𝑗(𝑡, 𝜃)𝑑𝑡

)︂6

𝑖,𝑗=1

𝑑−1
𝑇

− 𝑑−1
𝑇

(︂∫︁ 𝑇

0

𝜀(𝑡)𝑔𝑖𝑗(𝑡, 𝜃)𝑑𝑡

)︂6

𝑖,𝑗=1

𝑑−1
𝑇 + 𝑑−1

𝑇

(︂∫︁ 𝑇

0

𝑔𝑖(𝑡, 𝜃)𝑔𝑗(𝑡, 𝜃)𝑑𝑡

)︂6

𝑖,𝑗=1

𝑑−1
𝑇

= 𝐽 (1) − 𝐽 (2) + 𝐽 (3). (48)
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Покажемо, що при 𝑇 → ∞ матрицi 𝐽 (1) та 𝐽 (2) збiгаються до нульової матрицi
м.н. Розглянемо матрицю

𝑑−1
𝑇

(︀
𝑔𝑖𝑗(𝑡, 𝜃)

)︀
𝑑−1
𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −𝑡 sin(𝜑𝑡)
𝑇 2 0 0 0

0 0 𝑡 cos(𝜑𝑡)
𝑇 2 0 0 0

−𝑡 sin(𝜑𝑡)
𝑇 2

𝑡 cos(𝜑𝑡)
𝑇 2

−𝑡2(𝐴 cos(𝜑𝑡)+𝐵 sin(𝜑𝑡))
𝑇 3 0 0 0

0 0 0 0 0 −𝑡2 sin(𝜓𝑡2)
𝑇 3

0 0 0 0 0 𝑡2 cos(𝜓𝑡2)
𝑇 3

0 0 0 −𝑡2 sin(𝜓𝑡2)
𝑇 3

𝑡2 cos(𝜓𝑡2)
𝑇 3

−𝑡4(𝐶 cos(𝜓𝑡2)+𝐷 sin(𝜓𝑡2))
𝑇 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(49)

З теореми 1 випливає, що для 𝑡 ∈ [0, 𝑇 ]

⃒⃒
𝑔(𝑡, 𝜃)− 𝑔(𝑡, 𝜃0)

⃒⃒
= |𝐴 cos(𝜑𝑡) +𝐵 sin(𝜑𝑡) + 𝐶 cos(𝜓𝑡2) +𝐷 sin(𝜓𝑡2)

− 𝐴0 cos(𝜑0𝑡)−𝐵0 sin(𝜑0𝑡)− 𝐶0 cos(𝜓0𝑡2)−𝐷0 sin(𝜓0𝑡2)|
⩽ |
(︀
𝐴− 𝐴0

)︀
cos(𝜑𝑡) +

(︀
𝐵 −𝐵0

)︀
sin(𝜑𝑡) + 𝐴0

(︀
cos(𝜑𝑡)− cos(𝜑0𝑡)

)︀
+𝐵0

(︀
sin(𝜑𝑡)− sin(𝜑0𝑡)

)︀
|+ |

(︀
𝐶 − 𝐶0

)︀
cos(𝜓𝑡2) +

(︀
𝐷 −𝐷0

)︀
sin(𝜓𝑡2)

+ 𝐶0
(︀
cos(𝜓𝑡2)− cos(𝜓0𝑡2)

)︀
+𝐷0

(︀
sin(𝜓𝑡2)− sin(𝜓0𝑡2)

)︀
|

⩽ |𝐴− 𝐴0|+ |𝐵 −𝐵0|+ (|𝐴0|+ |𝐵0|)|𝜑− 𝜑0|𝑡+ |𝐶 − 𝐶0|+ |𝐷 −𝐷0|+ |𝜓 − 𝜓0|𝑡2

⩽ |𝐴𝑇−𝐴0|+|𝐵𝑇−𝐵0|+(|𝐴0|+|𝐵0|)|𝜑𝑇−𝜑0|𝑇+|𝐶𝑇−𝐶0|+|𝐷𝑇−𝐷0|+|𝜓𝑇−𝜓0|𝑇 2

= 𝑢𝑇 → 0 м.н. при 𝑇 → ∞. (50)

Маємо далi⃒⃒⃒
𝐽
(1)
13

⃒⃒⃒
⩽
𝑢𝑇
2
;
⃒⃒⃒
𝐽
(1)
23

⃒⃒⃒
⩽
𝑢𝑇
2
;
⃒⃒⃒
𝐽
(1)
46

⃒⃒⃒
⩽
𝑢𝑇
3
;
⃒⃒⃒
𝐽
(1)
56

⃒⃒⃒
⩽
𝑢𝑇
3
;

⃒⃒⃒
𝐽
(1)
33

⃒⃒⃒
⩽
𝑢𝑇
𝑇 3

∫︁ 𝑇

0

𝑡2
⃒⃒
𝐴 cos(𝜑𝑡) +𝐵 sin(𝜑𝑡)

⃒⃒
𝑑𝑡

=
𝑢𝑇
𝑇 3

∫︁ 𝑇

0

𝑡2
⃒⃒
(𝐴− 𝐴0) cos(𝜑𝑡) + (𝐵 −𝐵0) sin(𝜑𝑡) + 𝐴0 cos(𝜑𝑡) +𝐵0 sin(𝜑𝑡)

⃒⃒
𝑑𝑡

⩽
1

3

(︀
|𝐴𝑇 − 𝐴0|+ |𝐵𝑇 −𝐵0|+ |𝐴0|+ |𝐵0|

)︀
𝑢𝑇 ;
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⃒⃒⃒
𝐽
(1)
66

⃒⃒⃒
⩽
𝑢𝑇
𝑇 5

∫︁ 𝑇

0

𝑡4
⃒⃒
𝐶 cos(𝜓𝑡2) +𝐷 sin(𝜓𝑡2)

⃒⃒
𝑑𝑡

=
𝑢𝑇
𝑇 5

∫︁ 𝑇

0

𝑡4
⃒⃒⃒
(𝐶 − 𝐶0) cos(𝜓𝑡2) + (𝐷 −𝐷0) sin(𝜓𝑡2) + 𝐶0 cos(𝜓𝑡2) +𝐷0 sin(𝜓𝑡2)

⃒⃒⃒
𝑑𝑡

⩽
1

5

(︀
|𝐶𝑇 − 𝐶0|+ |𝐷𝑇 −𝐷0|+ |𝐶0|+ |𝐷0|

)︀
𝑢𝑇 . (51)

Усi iншi елементи матрицi 𝐽 (1) дорiвнюють нулю. Тому з (51) випливає, що

𝐽 (1) → 0 м.н. при 𝑇 → ∞. (52)

Розглянемо далi матрицю 𝐽 (2).⃒⃒⃒
𝐽
(2)
13

⃒⃒⃒
=

⃒⃒⃒⃒
1

𝑇 2

∫︁ 𝑇

0

𝜀(𝑡)𝑡 sin(𝜑𝑡)𝑑𝑡

⃒⃒⃒⃒
⩽

⃒⃒⃒⃒
1

𝑇 2

∫︁ 𝑇

0

𝜀(𝑡)𝑡(sin(𝜑𝑡)− sin(𝜑0𝑡))𝑑𝑡

⃒⃒⃒⃒
+

⃒⃒⃒⃒
1

𝑇 2

∫︁ 𝑇

0

𝜀(𝑡)𝑡 sin(𝜑0𝑡)𝑑𝑡

⃒⃒⃒⃒
= 𝐼1(𝑇 ) + 𝐼2(𝑇 ); (53)

𝐼1(𝑇 ) ⩽
1

𝑇

∫︁ 𝑇

0

|𝜀(𝑡)| 𝑑𝑡 · |𝜑𝑇 − 𝜑0|𝑇,

де другий множник прямує до нуля при 𝑇 → ∞ за теоремою 1.
З умови А1 випливає, що

1

𝑇

∫︁ 𝑇

0

|𝜀(𝑡)| 𝑑𝑡 ⩽ 1

2

(︂
1 +

1

𝑇

∫︁ 𝑇

0

𝜀2(𝑡)𝑑𝑡

)︂
→ 1

2
(1 +𝐵(0))

м.н. при 𝑇 → ∞, тому 𝐼1(𝑇 ) → 0 м.н. при 𝑇 → ∞.
З iншого боку, за умови A1(i) маємо

𝐸𝐼22(𝑇 ) = 𝑇−4

∫︁ 𝑇

0

∫︁ 𝑇

0

𝑡𝑠𝐵(𝑡− 𝑠) sin(𝜑0𝑡) sin(𝜑0𝑠)𝑑𝑡𝑑𝑠 ⩽
1

𝑇 2

∫︁ 𝑇

0

∫︁ 𝑇

0

𝐵(𝑡− 𝑠)𝑑𝑡𝑑𝑠

=

∫︁ 𝑇

0

∫︁ 𝑇

0

𝐵(𝑇 (𝑡− 𝑠))𝑑𝑡𝑑𝑠 =

∫︁ 1

−1

(1− |𝑡|)𝐵(𝑇𝑡)𝑑𝑡 ⩽ 2

∫︁ 1

0

𝐵(𝑇𝑡)𝑑𝑡 ⩽
2

1− 𝛼
𝐵(𝑇 ).

Покладемо 𝑇𝑛 = 𝑛𝛽, де 𝛽𝛼 > 1. Тодi 𝐼2(𝑇𝑛) → 0 м.н. при 𝑛→ ∞.
Розглянемо послiдовнiсть випадкових величин

sup
𝑇𝑛⩽𝑇⩽𝑇𝑛+1

|𝐼2(𝑇 )− 𝐼2(𝑇𝑛)| ⩽

(︃(︂
𝑇𝑛+1

𝑇𝑛

)︂2

− 1

)︃
𝐼2(𝑇𝑛) + 𝐼3(𝑇𝑛),

𝐼3(𝑇𝑛) =
1

𝑇𝑛

∫︁ 𝑇𝑛+1

𝑇𝑛

|𝜀(𝑡)|𝑑𝑡.
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Оскiльки,

𝐸𝐼23(𝑇𝑛) ⩽
1

𝑇 2
𝑛

∫︁ 𝑇𝑛+1

𝑇𝑛

∫︁ 𝑇𝑛+1

𝑇𝑛

𝐸|𝜀(𝑡)𝜀(𝑠)|𝑑𝑡𝑑𝑠 ⩽ 𝐵(0)

(︂
𝑇𝑛+1 − 𝑇𝑛

𝑇𝑛

)︂2

= 𝑂(𝑛−2),

то 𝐼3(𝑇𝑛) → 0 м.н. при 𝑛→ ∞, а, отже, 𝐽
(2)
13 → 0 м.н. при 𝑇 → ∞.

За умови A1(ii) також отримуємо, що 𝐽
(2)
13 → 0 м.н. при 𝑇 → ∞. Доведення

цього факту аналогiчно попередньому, беручи до уваги спiввiдношення

1

𝑇 2

∫︁ 𝑇

0

∫︁ 𝑇

0

|𝐵(𝑡− 𝑠)|𝑑𝑡𝑑𝑠 = 𝑂(𝑇−1).

Аналогiчно до 𝐽
(2)
13 отримуємо, що також 𝐽

(2)
23 , 𝐽

(2)
46 , 𝐽

(2)
56 → 0 м.н. при 𝑇 → ∞.

Оскiльки доведення того факту, що елементи 𝐽
(2)
33 та 𝐽

(2)
66 збiгаються до нуля

м.н. при 𝑇 → ∞ є аналогiчним, доведемо це лише для елементу 𝐽
(2)
66 :⃒⃒⃒

𝐽
(2)
66

⃒⃒⃒
= | 1

𝑇 5

∫︁ 𝑇

0

𝜀(𝑡)𝑡4[
(︀
𝐶 − 𝐶0

)︀
cos(𝜓𝑡2) +

(︀
𝐷 −𝐷0

)︀
sin(𝜓𝑡2)

+ 𝐶0
(︀
cos(𝜓𝑡2)− cos(𝜓0𝑡2)

)︀
+𝐷0

(︀
sin(𝜓𝑡2)− sin(𝜓0𝑡2)

)︀
+ 𝐶0 cos(𝜓0𝑡2)

+𝐷0 sin(𝜓0𝑡2)]𝑑𝑡| ⩽
[︀⃒⃒
𝐶𝑇 − 𝐶0

⃒⃒
+
⃒⃒
𝐷𝑇 −𝐷0

⃒⃒
+
(︀⃒⃒
𝐶0
⃒⃒
+
⃒⃒
𝐷0
⃒⃒)︀ ⃒⃒

𝜓𝑇 − 𝜓0
⃒⃒
𝑇 2
]︀

× 1

𝑇

∫︁ 𝑇

0

|𝜀(𝑡)|𝑑𝑡+
⃒⃒⃒⃒
𝐶0

𝑇 5

∫︁ 𝑇

0

𝜀(𝑡)𝑡4 cos(𝜓0𝑡2)𝑑𝑡

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝐷0

𝑇 5

∫︁ 𝑇

0

𝜀(𝑡)𝑡4 sin(𝜓0𝑡2)𝑑𝑡

⃒⃒⃒⃒
, (54)

де перший доданок прямує до нуля м.н. за теоремою 1; збiжнiсть м.н. до нуля
другого та третього доданкiв доводиться аналогiчно до збiжностi 𝐼2(𝑇 ). Отже,

𝐽 (2) → 0 м.н. при 𝑇 → ∞. (55)

Далi розглянемо матрицю 𝐽 (3). З теореми 1 отримуємо, що (див. (A. Ivanov &
Hladun, 2024))

lim
𝑇→∞

𝐽 (3) = lim
𝑇→∞

𝑑−1
𝑇

(︂∫︁ 𝑇

0

𝑔𝑖(𝑡, 𝜃)𝑔𝑗(𝑡, 𝜃)𝑑𝑡

)︂6

𝑖,𝑗=1

= lim
𝑇→∞

𝑑−1
𝑇 𝐽 (3)(𝜃0),

𝐽
(3)
11 (𝜃

0) =
1

𝑇

∫︁ 𝑇

0

cos2(𝜑0𝑡)𝑑𝑡 =
1

2
+

1

2𝑇

∫︁ 𝑇

0

cos(2𝜑0𝑡)𝑑𝑡,

𝐽
(3)
12 (𝜃

0) =
1

𝑇

∫︁ 𝑇

0

cos(𝜑0𝑡) sin(𝜑0𝑡)𝑑𝑡 =
1

2𝑇

∫︁ 𝑇

0

sin(2𝜑0𝑡)𝑑𝑡,
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𝐽
(3)
13 (𝜃

0) =
1

𝑇 2

∫︁ 𝑇

0

cos(𝜑0𝑡)𝑡(−𝐴0 sin(𝜑0𝑡) +𝐵0 cos(𝜑0𝑡))𝑑𝑡

= − 𝐴0

2𝑇 2

∫︁ 𝑇

0

𝑡 sin(2𝜑0𝑡)𝑑𝑡+
𝐵0

4
+
𝐵0

2𝑇 2

∫︁ 𝑇

0

𝑡 cos(2𝜑0𝑡)𝑑𝑡,

𝐽
(3)
22 (𝜃

0) =
1

𝑇

∫︁ 𝑇

0

sin2(𝜑0𝑡)𝑑𝑡 =
1

2
− 1

2𝑇

∫︁ 𝑇

0

cos(2𝜑0𝑡)𝑑𝑡,

𝐽
(3)
23 (𝜃

0) =
1

𝑇 2

∫︁ 𝑇

0

sin(𝜑0𝑡)𝑡(−𝐴0 sin(𝜑0𝑡) +𝐵0 cos(𝜑0𝑡))𝑑𝑡

= −𝐴
0

4
+

𝐴0

2𝑇 2

∫︁ 𝑇

0

𝑡 cos(2𝜑0𝑡)𝑑𝑡+
𝐵0

2𝑇 2

∫︁ 𝑇

0

𝑡 sin(2𝜑0𝑡)𝑑𝑡,

𝐽
(3)
33 (𝜃

0) =
1

𝑇 3

∫︁ 𝑇

0

(−𝐴0𝑡 sin(𝜑0𝑡) +𝐵0𝑡 cos(𝜑0𝑡))2𝑑𝑡

=
(𝐴0)2 + (𝐵0)2

6
− (𝐴0)2

2𝑇 3

∫︁ 𝑇

0

𝑡2 cos(2𝜑0𝑡)𝑑𝑡+
𝐵0

2𝑇 3

∫︁ 𝑇

0

𝑡2 cos(2𝜑0𝑡)𝑑𝑡

− 𝐴0𝐵0

𝑇 3

∫︁ 𝑇

0

𝑡2 sin(2𝜑0𝑡)𝑑𝑡; (56)

𝐽
(3)
41 (𝜃

0) =
1

𝑇

∫︁ 𝑇

0

cos(𝜓0𝑡2) cos(𝜑0𝑡)𝑑𝑡 =
1

2𝑇

∫︁ 𝑇

0

cos(𝜑0𝑡+ 𝜓0𝑡2)𝑑𝑡

+
1

2𝑇

∫︁ 𝑇

0

cos(𝜑0𝑡− 𝜓0𝑡2)𝑑𝑡,

𝐽
(3)
42 (𝜃

0) =
1

𝑇

∫︁ 𝑇

0

cos(𝜓0𝑡2) sin(𝜑0𝑡)𝑑𝑡 =
1

2𝑇

∫︁ 𝑇

0

sin(𝜑0𝑡+ 𝜓0𝑡2)𝑑𝑡

+
1

2𝑇

∫︁ 𝑇

0

sin(𝜑0𝑡− 𝜓0𝑡2)𝑑𝑡; ,

𝐽
(3)
43 (𝜃

0) =
1

𝑇 2

∫︁ 𝑇

0

cos(𝜓0𝑡2)𝑡
(︀
−𝐴0 sin(𝜑0𝑡) +𝐵0 cos(𝜑0𝑡)

)︀
𝑑𝑡

= − 𝐴0

2𝑇 2

∫︁ 𝑇

0

𝑡 sin(𝜑0𝑡+ 𝜓0𝑡2)𝑑𝑡− 𝐴0

2𝑇 2

∫︁ 𝑇

0

𝑡 sin(𝜑0𝑡− 𝜓0𝑡2)𝑑𝑡

+
𝐵0

2𝑇 2

𝑇∫︁
0

𝑡 cos(𝜑0𝑡+ 𝜓0𝑡2)𝑑𝑡+
𝐵0

2𝑇 2

𝑇∫︁
0

𝑡 cos(𝜑0𝑡+ 𝜓0𝑡2)𝑑𝑡,
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𝐽
(3)
51 (𝜃

0) =
1

𝑇

∫︁ 𝑇

0

sin(𝜓0𝑡2) cos(𝜑0𝑡)𝑑𝑡 =
1

2𝑇

∫︁ 𝑇

0

sin(𝜑0𝑡+ 𝜓0𝑡2)𝑑𝑡

− 1

2𝑇

∫︁ 𝑇

0

sin(𝜑0𝑡− 𝜓0𝑡2)𝑑𝑡,

𝐽
(3)
52 (𝜃

0) =
1

𝑇

∫︁ 𝑇

0

sin(𝜓0𝑡2) sin(𝜑0𝑡)𝑑𝑡 =
1

2𝑇

∫︁ 𝑇

0

cos(𝜑0𝑡− 𝜓0𝑡2)𝑑𝑡

− 1

2𝑇

∫︁ 𝑇

0

cos(𝜑0𝑡+ 𝜓0𝑡2)𝑑𝑡,

𝐽
(3)
53 (𝜃

0) =
1

𝑇 2

∫︁ 𝑇

0

sin(𝜓0𝑡2)𝑡
(︀
−𝐴0 sin(𝜑0𝑡) +𝐵0 cos(𝜑0𝑡)

)︀
𝑑𝑡

= − 𝐴0

2𝑇 2

∫︁ 𝑇

0

𝑡 cos(𝜑0𝑡− 𝜓0𝑡2)𝑑𝑡+
𝐴0

2𝑇 2

∫︁ 𝑇

0

𝑡 cos(𝜑0𝑡+ 𝜓0𝑡2)𝑑𝑡

+
𝐵0

2𝑇 2

∫︁ 𝑇

0

𝑡 sin(𝜑0𝑡+ 𝜓0𝑡2)𝑑𝑡− 𝐵0

2𝑇 2

∫︁ 𝑇

0

𝑡 sin(𝜑0𝑡− 𝜓0𝑡2)𝑑𝑡,

𝐽
(3)
61 (𝜃

0) =
1

𝑇 3

∫︁ 𝑇

0

𝑡2(−𝐶0 sin(𝜓0𝑡2) +𝐷0 cos(𝜓0𝑡2)) cos(𝜑0𝑡)𝑑𝑡

= − 𝐶0

2𝑇 3

∫︁ 𝑇

0

𝑡2 sin(𝜑0𝑡+ 𝜓0𝑡2)𝑑𝑡+
𝐶0

2𝑇 3

∫︁ 𝑇

0

𝑡2 cos(𝜑0𝑡− 𝜓0𝑡2)𝑑𝑡

+
𝐷0

2𝑇 3

∫︁ 𝑇

0

𝑡2 cos(𝜑0𝑡+ 𝜓0𝑡2)𝑑𝑡+
𝐷0

2𝑇 3

∫︁ 𝑇

0

𝑡2 cos(𝜑0𝑡− 𝜓0𝑡2)𝑑𝑡,

𝐽
(3)
62 (𝜃

0) =
1

𝑇 3

∫︁ 𝑇

0

𝑡2(−𝐶0 sin(𝜓0𝑡2) +𝐷0 cos(𝜓0𝑡2)) sin(𝜑0𝑡)𝑑𝑡

= − 𝐶0

2𝑇 3

∫︁ 𝑇

0

𝑡2 cos(𝜑0𝑡− 𝜓0𝑡2)𝑑𝑡+
𝐶0

2𝑇 3

∫︁ 𝑇

0

𝑡2 cos(𝜑0𝑡+ 𝜓0𝑡2)𝑑𝑡

+
𝐷0

2𝑇 3

∫︁ 𝑇

0

𝑡2 sin(𝜑0𝑡+ 𝜓0𝑡2)𝑑𝑡+
𝐷0

2𝑇 3

∫︁ 𝑇

0

𝑡2 sin(𝜑0𝑡− 𝜓0𝑡2)𝑑𝑡,
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𝐽
(3)
63 (𝜃

0) =
1

𝑇 4

∫︁ 𝑇

0

𝑡2(−𝐶0 sin(𝜓0𝑡2) +𝐷0 cos(𝜓0𝑡2))𝑡(−𝐴0 sin(𝜑0) +𝐵0 cos(𝜑0))𝑑𝑡

=
𝐴0𝐶0

2𝑇 4

∫︁ 𝑇

0

𝑡3 cos(𝜑0𝑡− 𝜓0𝑡2)𝑑𝑡− 𝐴0𝐶0

2𝑇 4

∫︁ 𝑇

0

𝑡3 cos(𝜑0𝑡+ 𝜓0𝑡2)𝑑𝑡

− 𝐴0𝐷0

2𝑇 4

∫︁ 𝑇

0

𝑡3 cos(𝜑0𝑡− 𝜓0𝑡2)𝑑𝑡− 𝐴0𝐷0

2𝑇 4

∫︁ 𝑇

0

𝑡3 sin(𝜑0𝑡− 𝜓0𝑡2)𝑑𝑡

− 𝐵0𝐶0

2𝑇 4

∫︁ 𝑇

0

𝑡3 sin(𝜑0𝑡+ 𝜓0𝑡2)𝑑𝑡+
𝐵0𝐶0

2𝑇 4

∫︁ 𝑇

0

𝑡3 sin(𝜑0𝑡− 𝜓0𝑡2)𝑑𝑡

+
𝐵0𝐷0

2𝑇 4

∫︁ 𝑇

0

𝑡3 cos(𝜑0𝑡+ 𝜓0𝑡2)𝑑𝑡+
𝐵0𝐷0

2𝑇 4

∫︁ 𝑇

0

𝑡3 cos(𝜑0𝑡− 𝜓0𝑡2)𝑑𝑡; (57)

𝐽
(3)
44 (𝜃

0) =
1

𝑇

∫︁ 𝑇

0

cos2(𝜓0𝑡2)𝑑𝑡 =
1

2
+

1

2𝑇

∫︁ 𝑇

0

cos(2𝜓0𝑡2)𝑑𝑡,

𝐽
(3)
45 (𝜃

0) =
1

𝑇

∫︁ 𝑇

0

cos(𝜓0𝑡2) sin(𝜓0𝑡2)𝑑𝑡 =
1

2𝑇

∫︁ 𝑇

0

sin(2𝜓0𝑡2)𝑑𝑡,

𝐽
(3)
46 (𝜃

0) =
1

𝑇 3

∫︁ 𝑇

0

cos(𝜓0𝑡2)𝑡2(−𝐶0 sin(𝜓0𝑡2) +𝐷0 cos(𝜓0𝑡2))𝑑𝑡

= − 𝐶0

2𝑇 3

∫︁ 𝑇

0

𝑡2 sin(2𝜓0𝑡2)𝑑𝑡+
𝐷0

6
+
𝐷0

2𝑇 3

∫︁ 𝑇

0

𝑡2 cos(2𝜓0𝑡2)𝑑𝑡,

𝐽
(3)
55 (𝜃

0) =
1

𝑇

∫︁ 𝑇

0

sin2(𝜓0𝑡2)𝑑𝑡 =
1

2
− 1

2𝑇

∫︁ 𝑇

0

cos(2𝜓0𝑡2)𝑑𝑡,

𝐽
(3)
56 (𝜃

0) =
1

𝑇 3

∫︁ 𝑇

0

sin(𝜓0𝑡2)𝑡2(−𝐶0 sin(𝜓0𝑡2) +𝐷0 cos(𝜓0𝑡2))𝑑𝑡

= −𝐶
0

6
+

𝐶0

2𝑇 3

∫︁ 𝑇

0

𝑡2 cos(2𝜓0𝑡2)𝑑𝑡+
𝐷0

2𝑇 3

∫︁ 𝑇

0

𝑡2 sin(2𝜓0𝑡2)𝑑𝑡,

𝐽
(3)
66 (𝜃

0) =
1

𝑇 5

∫︁ 𝑇

0

(−𝐶0𝑡2 sin(𝜓0𝑡2) +𝐷0𝑡2 cos(𝜓0𝑡2))2𝑑𝑡

=
(𝐶0)2 + (𝐷0)2

10
− (𝐶0)2

2𝑇 5

∫︁ 𝑇

0

𝑡4 cos(2𝜓0𝑡2)𝑑𝑡+
𝐷0

2𝑇 5

∫︁ 𝑇

0

𝑡4 cos(2𝜓0𝑡2)𝑑𝑡

− 𝐶0𝐷0

𝑇 5

∫︁ 𝑇

0

𝑡4 sin(2𝜓0𝑡2)𝑑𝑡. (58)
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Використовуючи метод iнтегрування частинами, можна показати, що для 𝑛 ∈
N, 𝛼 ∈ R ∖ {0}, ∫︁ 𝑇

0

𝑡𝑛
cos
sin

(𝛼𝑡)𝑑𝑡 = 𝑂(𝑇 𝑛), 𝑡→ ∞. (59)

Далi з властивостей iнтегралiв Френеля отримуємо, що для 𝛼 ∈ R, 𝛽 ∈ R∖{0},
(див. (A. Ivanov & Hladun, 2023))⃒⃒⃒⃒∫︁ 𝑇

0

cos
sin

(𝛼𝑡+ 𝛽𝑡2)𝑑𝑡

⃒⃒⃒⃒
⩽

4√︀
|𝛽|
. (60)

З формули 2.655 таблиць iнтегралiв (Gradshteyn & Ryzhik, 2014) випливає, що
для 𝛼 ∈ R, 𝛽 ∈ R ∖ {0}, 𝑛 ∈ N,∫︁ 𝑇

0

𝑡𝑛
cos
sin

(𝛼𝑡+ 𝛽𝑡2)𝑑𝑡 = 𝑂(𝑇 𝑛−1), 𝑇 → ∞. (61)

Таким чином, застосовуючи формули (59)-(61) до (56)-(58), можемо
сформулювати наступну лему.

Лема 3. Якщо виконується умова А1, то

𝑑−1
𝑇

(︂
1

2
𝑄′′(𝜃)

)︂
𝑑−1
𝑇 → 𝐻 м.н. при 𝑇 → ∞, (62)

де 𝐻 = 𝑑𝑖𝑎𝑔(𝐻1, 𝐻2) – блочно-дiагональна матриця з блоками

𝐻1 =
1

2

⎡⎢⎣ 1 0 𝐵0

2

0 1 −𝐴0

2
𝐵0

2 −𝐴0

2
(𝐴0)2+(𝐵0)2

3

⎤⎥⎦ ; 𝐻2 =
1

2

⎡⎢⎣ 1 0 𝐷0

3

0 1 −𝐶0

3
𝐷0

3 −𝐶0

3
(𝐶0)2+(𝐷0)2

5

⎤⎥⎦ .
Введемо дiагональну матрицю

𝑠𝑇 = 𝑑𝑖𝑎𝑔
(︁
1, 1, 1, 𝑇

1
2 , 𝑇

1
2 , 𝑇

3
2

)︁
. (63)

Розглянемо гауссiвський випадковий вектор 𝑠𝑇𝑑
−1
𝑇

(︀
−1

2𝑄
′
𝑇 (𝜃

0)
)︀
= 𝜉𝑇 ,

𝜉𝑇 =
(︁ 1

𝑇
1
2

∫︁ 𝑇

0

𝜀(𝑡) cos(𝜑0𝑡)𝑑𝑡,
1

𝑇
1
2

∫︁ 𝑇

0

𝜀(𝑡) sin(𝜑0𝑡)𝑑𝑡,
1

𝑇
3
2

∫︁ 𝑇

0

𝜀(𝑡)𝑡(−𝐴0 sin(𝜑0𝑡)

+𝐵0𝑐𝑜𝑠(𝜑0𝑡))𝑑𝑡,

∫︁ 𝑇

0

𝜀(𝑡) cos(𝜓0𝑡2)𝑑𝑡,

∫︁ 𝑇

0

𝜀(𝑡) sin(𝜓0𝑡2)𝑑𝑡,
1

𝑇

∫︁ 𝑇

0

𝜀(𝑡)𝑡2(−𝐶0 sin(𝜓0𝑡2)

+𝐷0𝑐𝑜𝑠(𝜓0𝑡2))𝑑𝑡
)︁*

=
(︀
𝜉1𝑇 , 𝜉

2
𝑇 , 𝜉

3
𝑇 , 𝜉

4
𝑇 , 𝜉

5
𝑇 , 𝜉

6
𝑇

)︀*
. (64)
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Позначимо 𝑊𝑇 = (𝑊𝑖𝑗,𝑇 )
6
𝑖,𝑗=1 = 𝐸𝜉𝑇 𝜉

*
𝑇 коварiацiйну матрицю вектора 𝜉𝑇 .

Роздiлимо коварiацiйну матрицю𝑊𝑇 на блоки розмiрностi 3×3 наступним чином

𝑊𝑇 =

[︃
𝑊

(11)
𝑇 𝑊

(12)
𝑇

𝑊
(21)
𝑇 𝑊

(22)
𝑇

]︃
, (65)

де 𝑊
(11)
𝑇 = 𝐸𝜉

(1)
𝑇

(︁
𝜉
(1)
𝑇

)︁*
, 𝑊

(22)
𝑇 = 𝐸𝜉

(2)
𝑇

(︁
𝜉
(2)
𝑇

)︁*
– коварiацiйнi матрицi векторiв

𝜉
(1)
𝑇 = (𝜉1𝑇 , 𝜉

2
𝑇 , 𝜉

3
𝑇 ) i 𝜉

(2)
𝑇 = (𝜉4𝑇 , 𝜉

5
𝑇 , 𝜉

6
𝑇 ), вiдповiдно 𝑊

(12)
𝑇 =

(︁
𝑊

(21)
𝑇

)︁*
= 𝐸𝜉

(1)
𝑇

(︁
𝜉
(2)
𝑇

)︁*
– взаємнi коварiацiйнi матрицi векторiв 𝜉

(1)
𝑇 i 𝜉

(2)
𝑇 .

Для знаходження граничного розподiлу ОНК 𝜃𝑇 нам потрiбно дослiдити
граничну при 𝑇 → ∞ поведiнку матрицi 𝑊𝑇 .

1) Блок 𝑊
(11)
𝑇 .

Нехай 𝑔(𝑡, 𝜃), (𝑡, 𝜃) ∈ R+ × Θ,Θ ⊂ R𝑞 – вiдкрита множина, є деякою неперервно
диференцiйованою функцiєю на Θ.

Введемо сiм’ю матричних мiр 𝜇𝑇 (𝑑𝜆, 𝜃) на (R,ℬ), де ℬ – 𝜎-алгебра борелевих

пiдмножин R з матричними щiльностями
(︁
𝜇𝑗𝑙𝑇

)︁𝑞
𝑗,𝑙=1

.

𝜇𝑗𝑙𝑇 (𝜆𝜃) = 𝑔𝑗𝑇 (𝜆𝜃)𝑔
𝑙
𝑇 (𝜆𝜃)

(︁∫︁ ∞

−∞
|𝑔𝑗𝑇 (𝜆𝜃)|

2𝑑𝜆 ·
∫︁ ∞

−∞
|𝑔𝑙𝑇 (𝜆𝜃)|2𝑑𝜆

)︁− 1
2

,

𝑔𝑗𝑇 (𝜆𝜃) =

∫︁ 𝑇

0

𝑒𝑖𝜆𝑡𝑔𝑗(𝑡, 𝜃)𝑑𝑡, 𝑔𝑗 =
𝜕𝑔(𝑡, 𝜃)

𝜕𝜃𝑗
, 𝑗, 𝑙 = 1, 𝑞. (66)

Позначимо

𝑑2𝑇 (𝜃) = 𝑑𝑖𝑎𝑔
(︁
𝑑2𝑖𝑇 (𝜃)

)︁𝑞
𝑖=1

, 𝑑2𝑖𝑇 (𝜃) =

∫︁ 𝑇

0

𝑔2𝑖 (𝑡, 𝜃)𝑑𝑡, 𝑖 = 1, 𝑞. (67)

Зауважимо, що за тотожнiстю Планшереля

𝑑2𝑗𝑇 (𝜃) = (2𝜋)−1

∫︁ ∞

−∞
|𝑔𝑗(𝜆, 𝜃)|2𝑑𝜆. (68)

Припустимо, що сiм’я мiр 𝜇𝑇 (𝑑𝜆, 𝜃) слабко збiгається при 𝑇 → ∞ до додатно
визначеної матричної мiри 𝜇(𝑑𝜆, 𝜃).

Додатна визначенiсть матричної мiри 𝜇(𝑑𝜆, 𝜃) означає, що елементи 𝜇𝑗𝑙(𝑑𝜆, 𝜃)
матрицi 𝜇𝑇 (𝑑𝜆, 𝜃) є комплекснi заряди обмеженої варiацiї та матриця 𝜇𝑇 (𝐵, 𝜃)
невiд’ємно визначена для будь-якої множини 𝐵 ∈ ℬ, причому 𝜇(R, 𝜃) – додатно
визначена матриця.
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Означення 2. (Grenander, 1954; Ibragimov & Rozanov, 1978; A.V. Ivanov et
al., 2015) Мiра 𝜇(𝑑𝜆, 𝜃) називається спектральною мiрою функцiї 𝑔(𝑡, 𝜃), або, що
те ж саме, спектральною мiрою вектор-функцiї ∇𝑔(𝑡, 𝜃).

Нехай, 𝑔(𝑡, 𝜃0) = 𝐴0 cos(𝜑0𝑡) +𝐵0 sin(𝜑0𝑡). Тодi спектральна мiра 𝜇(𝑑𝜆, 𝜃0) має
вигляд (див. (A.V. Ivanov et al., 2015))⎛⎝ 𝛿 𝑖𝜌 𝛽

−𝑖𝜌 𝛿 𝛾
𝛽 𝛾 𝛿

⎞⎠ , (69)

де

𝛽 =

√
3(𝐵0𝛿 + 𝑖𝐴0𝜌)

2
√︀
(𝐴0)2 + (𝐵0)2

, 𝛾 =

√
3(−𝐴0𝛿 + 𝑖𝐵0𝜌)

2
√︀

(𝐴0)2 + (𝐵0)2
,

мiра 𝛿 = 𝛿(𝑑𝜆) та заряд 𝜌 = 𝜌(𝑑𝜆) зосередженi у точках ±𝜑0, причому 𝛿
{︀
±𝜑0

}︀
=

1
2 , 𝜌(

{︀
±𝜑0

}︀
) = ±1

2 .
Робота (A.V. Ivanov et al., 2015) мiстить результат, який для функцiї 𝑔(𝑡, 𝜃0) =

𝐴0 cos(𝜑0𝑡) +𝐵0 sin(𝜑0𝑡) може бути сформульованим наступним чином.
Лема 4. Якщо виконано умову А1 та послаблену умову А2(i), а саме: процес

𝜀, що задовольняє умову А1(i), має спектральну щiльнiсть 𝑓(𝜆) = 𝐿̃( 1
|𝜆|)|𝜆|

𝛼−1,

де 𝐿̃ – повiльно змiнна на нескiнченностi функцiя, то випадковий вектор 𝜉𝑇 =

𝑑−1
𝑇 (𝜃)

∫︀ 𝑇
0 𝜀(𝑡)∇𝑔(𝑡, 𝜃)𝑑𝑡 має граничну при 𝑇 → ∞ коварiацiйну матрицю 𝜎 =

2𝜋
∫︀∞
−∞ 𝑓(𝜆)𝜇(𝑑𝜆, 𝜃0).
Враховуючи (69) та лему 4, отримуємо

𝜎 = 2𝜋𝑓(𝜑0)×

⎡⎢⎢⎢⎣
1 0

√
3𝐵0

2
√

(𝐴0)2+(𝐵0)2

0 1 −
√
3

2
√

(𝐴0)2+(𝐵0)2√
3𝐵0

2
√

(𝐴0)2+(𝐵0)2
−
√
3𝐴0

2
√

(𝐴0)2+(𝐵0)2
1

⎤⎥⎥⎥⎦ . (70)

Також зауважимо, що для даної тригонометричної функцiї

𝑑1𝑇 (𝜃
0) ∽

𝑇
1
2

√
2
, 𝑑2𝑇 (𝜃

0) ∽
𝑇

1
2

√
2
, 𝑑3𝑇 (𝜃

0) ∽ 𝑇
3
2

√︂
1

6
[(𝐴0)2 + (𝐵0)2]. (71)

Тому, враховуючи (70) i (71), коварiацiйна матриця𝑊
(11)
𝑇 випадкового вектора

𝜉
(1)
𝑇 може бути знайдена, як

𝑊 (11) = 𝑄𝜎𝑄, де 𝑄 = 𝑑𝑖𝑎𝑔

(︃
1√
2
,
1√
2
,

√︂
(𝐴0)2 + (𝐵0)2

6

)︃
. (72)
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Отже

𝑊 (11) = 2𝜋𝑓(𝜑0) · 1
2

⎡⎢⎣ 1 0 𝐵0

2

0 1 −𝐴0

2
𝐵0

2 −𝐴0

2
(𝐴0)2+(𝐵0)2

3

⎤⎥⎦ = 2𝜋𝑓(𝜑0)𝐻1. (73)

2) Блок 𝑊
(22)
𝑇 .

Позначимо −𝐶0 sin(𝜓0𝑡2) + 𝐷0 cos(𝜓0𝑡2) = 𝛽0 cos(𝜓0𝑡2 + 𝛽0), де 𝛽0 =√︀
(𝐶0)2 + (𝐷0)2, 𝑡𝑔𝛽0 =

𝐶0

𝐷0 . Також будемо використовувати позначення

𝜇𝑇 (𝜆, 𝛽0) =

[︃
𝜇11,𝑇 (𝜆, 𝛽0) 𝜇12,𝑇 (𝜆, 𝛽0)

𝜇21,𝑇 (𝜆, 𝛽0) 𝜇22,𝑇 (𝜆, 𝛽0)

]︃

=

[︃∫︀ 𝑇
0 cos(𝜆𝑡) cos(𝜓0𝑡2 + 𝛽0)𝑑𝑡

∫︀ 𝑇
0 cos(𝜆𝑡) sin(𝜓0𝑡2 + 𝛽0)𝑑𝑡∫︀ 𝑇

0 sin(𝜆𝑡) cos(𝜓0𝑡2 + 𝛽0)𝑑𝑡
∫︀ 𝑇
0 sin(𝜆𝑡) sin(𝜓0𝑡2 + 𝛽0)𝑑𝑡

]︃
. (74)

𝜇11,𝑇 (𝜆, 𝛽0)

𝜇22,𝑇 (𝜆, 𝛽0)
=

1

2

∫︁ 𝑇

0

cos(𝜓0𝑡2 − 𝜆𝑡+ 𝛽0)𝑑𝑡± 1

2

∫︁ 𝑇

0

cos(𝜓0𝑡2 + 𝜆𝑡+ 𝛽0)𝑑𝑡

=
1

2

∫︁ 𝑇

0

cos

(︃
𝜓0

(︂
𝑡− 𝜆

2𝜓0

)︂2

−
(︂
𝜆2

4𝜓0
− 𝛽0

)︂)︃
𝑑𝑡

± 1

2

∫︁ 𝑇

0

cos

(︃
𝜓0

(︂
𝑡+

𝜆

2𝜓0

)︂2

−
(︂
𝜆2

4𝜓0
− 𝛽0

)︂)︃
𝑑𝑡

=
1

2
√︀
𝜓0

∫︁ 𝑇
√
𝜓0− 𝜆

2
√
𝜓0

− 𝜆

2
√
𝜓0

cos

(︂
𝑠2 −

(︂
𝜆2

4𝜓0
− 𝛽0

)︂)︂
𝑑𝑠

± 1

2
√︀
𝜓0

∫︁ 𝑇
√
𝜓0+ 𝜆

2
√
𝜓0

𝜆

2
√
𝜓0

cos

(︂
𝑠2 −

(︂
𝜆2

4𝜓0
− 𝛽0

)︂)︂
𝑑𝑠

=
1

2
√︀
𝜓0

[︃
cos

(︂
𝜆2

4𝜓0
− 𝛽0

)︂(︃∫︁ 𝑇
√
𝜓0− 𝜆

2
√
𝜓0

0

cos(𝑠2)𝑑𝑠−
∫︁ − 𝜆

2
√
𝜓0

0

cos(𝑠2)𝑑𝑠

)︃

+ sin

(︂
𝜆2

4𝜓0
− 𝛽0

)︂(︃∫︁ 𝑇
√
𝜓0− 𝜆

2
√
𝜓0

0

sin(𝑠2)𝑑𝑠−
∫︁ − 𝜆

2
√
𝜓0

0

sin(𝑠2)𝑑𝑠

)︃

± cos

(︂
𝜆2

4𝜓0
− 𝛽0

)︂(︃∫︁ 𝑇
√
𝜓0+ 𝜆

2
√
𝜓0

0

cos(𝑠2)𝑑𝑠−
∫︁ 𝜆

2
√
𝜓0

0

cos(𝑠2)𝑑𝑠

)︃

± sin

(︂
𝜆2

4𝜓0
− 𝛽0

)︂(︃∫︁ 𝑇
√
𝜓0+ 𝜆

2
√
𝜓0

0

sin(𝑠2)𝑑𝑠−
∫︁ 𝜆

2
√
𝜓0

0

sin(𝑠2)𝑑𝑠

)︃]︃
; (75)
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𝜇12,𝑇 (𝜆, 𝛽0)

𝜇21,𝑇 (𝜆, 𝛽0)
=

1

2

∫︁ 𝑇

0

sin(𝜓0𝑡2 + 𝜆𝑡+ 𝛽0)𝑑𝑡± 1

2

∫︁ 𝑇

0

sin(𝜓0𝑡2 − 𝜆𝑡+ 𝛽0)𝑑𝑡

=
1

2

∫︁ 𝑇

0

sin

(︃
𝜓0

(︂
𝑡+

𝜆

2𝜓0

)︂2

−
(︂
𝜆2

4𝜓0
− 𝛽0

)︂)︃
𝑑𝑡

± 1

2

∫︁ 𝑇

0

sin

(︃
𝜓0

(︂
𝑡− 𝜆

2𝜓0

)︂2

−
(︂
𝜆2

4𝜓0
− 𝛽0

)︂)︃
𝑑𝑡

=
1

2
√︀
𝜓0

∫︁ 𝑇
√
𝜓0+ 𝜆

2
√
𝜓0

𝜆

2
√
𝜓0

sin

(︂
𝑠2 −

(︂
𝜆2

4𝜓0
− 𝛽0

)︂)︂
𝑑𝑠

± 1

2
√︀
𝜓0

∫︁ 𝑇
√
𝜓0− 𝜆

2
√
𝜓0

− 𝜆

2
√
𝜓0

sin

(︂
𝑠2 −

(︂
𝜆2

4𝜓0
− 𝛽0

)︂)︂
𝑑𝑠

=
1

2
√︀
𝜓0

[︃
cos

(︂
𝜆2

4𝜓0
− 𝛽0

)︂(︃∫︁ 𝑇
√
𝜓0+ 𝜆

2
√
𝜓0

0

sin(𝑠2)𝑑𝑠−
∫︁ 𝜆

2
√
𝜓0

0

sin(𝑠2)𝑑𝑠

)︃

− sin

(︂
𝜆2

4𝜓0
− 𝛽0

)︂(︃∫︁ 𝑇
√
𝜓0+ 𝜆

2
√
𝜓0

0

cos(𝑠2)𝑑𝑠−
∫︁ 𝜆

2
√
𝜓0

0

cos(𝑠2)𝑑𝑠

)︃

± cos

(︂
𝜆2

4𝜓0
− 𝛽0

)︂(︃∫︁ 𝑇
√
𝜓0− 𝜆

2
√
𝜓0

0

sin(𝑠2)𝑑𝑠−
∫︁ − 𝜆

2
√
𝜓0

0

sin(𝑠2)𝑑𝑠

)︃

∓ sin

(︂
𝜆2

4𝜓0
− 𝛽0

)︂(︃∫︁ 𝑇
√
𝜓0− 𝜆

2
√
𝜓0

0

cos(𝑠2)𝑑𝑠−
∫︁ − 𝜆

2
√
𝜓0

0

cos(𝑠2)𝑑𝑠

)︃]︃
. (76)

Використовуючи введенi вище позначення для iнтегралiв Френеля, отримуємо

lim
𝑇→∞

𝜇𝑇 (𝜆, 𝛽0) =

[︃
𝜇11(𝜆, 𝛽0) 𝜇12(𝜆, 𝛽0)

𝜇21(𝜆, 𝛽0) 𝜇22(𝜆, 𝛽0)

]︃
,

𝜇11,𝑇 (𝜆, 𝛽0)

𝜇22,𝑇 (𝜆, 𝛽0)
=

1

2
√︀
𝜓0

[︃
cos

(︂
𝜆2

4𝜓0
− 𝛽0

)︂(︃√︂
𝜋

8
− 𝐶

(︃
− 𝜆

2
√︀
𝜓0

)︃)︃

+ sin

(︂
𝜆2

4𝜓0
− 𝛽0

)︂(︃√︂
𝜋

8
− 𝑆

(︃
− 𝜆

2
√︀
𝜓0

)︃)︃

± cos

(︂
𝜆2

4𝜓0
− 𝛽0

)︂(︃√︂
𝜋

8
− 𝐶

(︃
𝜆

2
√︀
𝜓0

)︃)︃
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± sin

(︂
𝜆2

4𝜓0
− 𝛽0

)︂(︃√︂
𝜋

8
− 𝑆

(︃
𝜆

2
√︀
𝜓0

)︃)︃]︃
; (77)

𝜇12,𝑇 (𝜆, 𝛽0)

𝜇21,𝑇 (𝜆, 𝛽0)
=

1

2
√︀
𝜓0

[︃
cos

(︂
𝜆2

4𝜓0
− 𝛽0

)︂(︃√︂
𝜋

8
− 𝑆

(︃
𝜆

2
√︀
𝜓0

)︃)︃

− sin

(︂
𝜆2

4𝜓0
− 𝛽0

)︂(︃√︂
𝜋

8
− 𝐶

(︃
𝜆

2
√︀
𝜓0

)︃)︃

± cos

(︂
𝜆2

4𝜓0
− 𝛽0

)︂(︃√︂
𝜋

8
− 𝑆

(︃
− 𝜆

2
√︀
𝜓0

)︃)︃

∓ sin

(︂
𝜆2

4𝜓0
− 𝛽0

)︂(︃√︂
𝜋

8
− 𝐶

(︃
− 𝜆

2
√︀
𝜓0

)︃)︃]︃
; (78)

Iз (75) та (76), за властивостями iнтегралiв Френеля, отримуємо, що рiвномiрно
за 𝑇 , 𝜆 > 0

|𝜇𝑖𝑗(𝜆, 𝛽0)| ⩽ 4√︀
𝜓0
, 𝑖, 𝑗 = 1, 2. (79)

Крiм того, для будь-якого Λ > 0 та 𝑖, 𝑗 = 1, 2

2
√︀
𝜓0 sup

𝜆∈[0,Λ]

⃒⃒⃒
𝜇𝑖𝑗,𝑇 (𝜆, 𝛽0)− 𝜇𝑖𝑗(𝜆, 𝛽0)

⃒⃒⃒
⩽ sup

𝜆∈[0,Λ]

⃒⃒⃒⃒
⃒𝐶
(︃
𝑇
√︀
𝜓0 +

𝜆

2
√︀
𝜓0

)︃
−
√︂
𝜋

8

⃒⃒⃒⃒
⃒

+ sup
𝜆∈[0,Λ]

⃒⃒⃒⃒
⃒𝐶
(︃
𝑇
√︀
𝜓0 − 𝜆

2
√︀
𝜓0

−
√︂
𝜋

8

)︃⃒⃒⃒⃒
⃒+ sup

𝜆∈[0,Λ]

⃒⃒⃒⃒
⃒𝑆
(︃
𝑇
√︀
𝜓0 +

𝜆

2
√︀
𝜓0

)︃
−
√︂
𝜋

8

⃒⃒⃒⃒
⃒

+ sup
𝜆∈[0,Λ]

⃒⃒⃒⃒
⃒𝑆
(︃
𝑇
√︀
𝜓0 − 𝜆

2
√︀
𝜓0

)︃
−
√︂
𝜋

8

⃒⃒⃒⃒
⃒→ 0 при 𝑇 → ∞. (80)

Вирази у (77) та (78) можна записати у бiльш стислому виглядi, звiвши подiбнi
доданки та користуючись непарнiстю функцiй 𝑆(𝑥) та 𝐶(𝑥):

𝜇11(𝜆, 𝛽0) =

√︂
𝜋

8𝜓0

(︃
cos

(︂
𝜆2

4𝜓0
− 𝛽0

)︂
+ sin

(︂
𝜆2

4𝜓0
− 𝛽0

)︂)︃

=

√︂
𝜋

4𝜓0
cos

(︂
𝜆2

4𝜓0
− 𝛽0 − 𝜋

4

)︂
;
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𝜇22(𝜆, 𝛽0) =
1√︀
𝜓0

(︃
cos

(︂
𝜆2

4𝜓0
− 𝛽0

)︂
𝐶

(︃
𝜆

2
√︀
𝜓0

)︃

+ sin

(︂
𝜆2

4𝜓0
− 𝛽0

)︂
𝑆

(︃
𝜆

2
√︀
𝜓0

)︃)︃
;

𝜇12(𝜆, 𝛽0) =

√︂
𝜋

8𝜓0

(︃
cos

(︂
𝜆2

4𝜓0
− 𝛽0

)︂
− sin

(︂
𝜆2

4𝜓0
− 𝛽0

)︂)︃

= −
√︂

𝜋

4𝜓0
sin

(︂
𝜆2

4𝜓0
− 𝛽0 − 𝜋

4

)︂
;

𝜇21(𝜆, 𝛽0) = − 1√︀
𝜓0

(︃
cos

(︂
𝜆2

4𝜓0
− 𝛽0

)︂
𝑆

(︃
𝜆

2
√︀
𝜓0

)︃

− sin

(︂
𝜆2

4𝜓0
− 𝛽0

)︂
𝐶

(︃
𝜆

2
√︀
𝜓0

)︃)︃
(81)

Далi дослiдимо iнтеграли виду
∫︀ 𝑇
0 𝑡

cos
sin

(𝜆𝑡)
cos
sin

(𝜓0𝑡2 + 𝛽0)𝑑𝑡.

(𝑖)

∫︁ 𝑇

0

𝑡 cos(𝜆𝑡) cos(𝜓0𝑡2 + 𝛽0)𝑑𝑡 =
1

2𝜓0

[︁
sin(𝜓0𝑇 2 + 𝛽0) cos(𝜆𝑇 )− sin(𝛽0)

+ 𝜆𝜇22,𝑇 (𝜆, 𝛽0)
]︁
;

(𝑖𝑖)

∫︁ 𝑇

0

𝑡 sin(𝜆𝑡) cos(𝜓0𝑡2+ 𝛽0)𝑑𝑡 =
1

2𝜓0

[︁
sin(𝜓0𝑇 2+ 𝛽0) sin(𝜆𝑇 )−𝜆𝜇12,𝑇 (𝜆, 𝛽0)

]︁
;

(𝑖𝑖𝑖)

∫︁ 𝑇

0

𝑡 cos(𝜆𝑡) sin(𝜓0𝑡2 + 𝛽0)𝑑𝑡 =
1

2𝜓0

[︁
− cos(𝜓0𝑇 2 + 𝛽0) cos(𝜆𝑇 ) + cos(𝛽0)

− 𝜆𝜇21,𝑇 (𝜆, 𝛽0)
]︁
;

(𝑖𝑣)

∫︁ 𝑇

0

𝑡 sin(𝜆𝑡) sin(𝜓0𝑡2+𝛽0)𝑑𝑡 =
1

2𝜓0

[︁
−cos(𝜓0𝑇 2+𝛽0) sin(𝜆𝑇 )+𝜆𝜇11,𝑇 (𝜆, 𝛽0)

]︁
.

(82)
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Очевидно, що iнтеграли (82) обмеженi за 𝑇 величиною

1

2𝜓0

(︃
2 + 𝜆

4√︀
𝜓0

)︃
=

1

𝜓0
+

𝜆

(𝜓0)
3
2

. (83)

Далi розглянемо iнтеграли
∫︀ 𝑇
0 𝑡2

cos
sin

(𝜆𝑡) cos(𝜓0𝑡2 + 𝛽0)𝑑𝑡.

(𝑣)

∫︁ 𝑇

0

𝑡2 cos(𝜆𝑡) cos(𝜓0𝑡2 + 𝛽0)𝑑𝑡 =
1

2𝜓0

[︁
𝑇 sin(𝜓0𝑇 2 + 𝛽0) cos(𝜆𝑇 )

− 𝜇12,𝑇 (𝜆, 𝛽0) + 𝜆

∫︁ 𝑇

0

𝑡 sin(𝜆𝑡) sin(𝜓0𝑡2 + 𝛽0)𝑑𝑡
]︁
;

(𝑣𝑖)

∫︁ 𝑇

0

𝑡2 sin(𝜆𝑡) cos(𝜓0𝑡2 + 𝛽0)𝑑𝑡 =
1

2𝜓0

[︁
𝑇 sin(𝜓0𝑇 2 + 𝛽0) sin(𝜆𝑇 )

− 𝜇22,𝑇 (𝜆, 𝛽0)− 𝜆

∫︁ 𝑇

0

𝑡 cos(𝜆𝑡) sin(𝜓0𝑡2 + 𝛽0)𝑑𝑡
]︁
. (84)

Враховуючи умову A2, скористаємося стандартною формулою 𝐵(𝑡) =
2
∫︀∞
0 𝑓(𝜆) cos(𝜆𝑡)𝑑𝑡. Тодi за т. Лебега про мажоровану збiжнiсть отримуємо

𝑊
(22)
11,𝑇 = 2

∫︁ ∞

0

𝑓(𝜆)

∫︁ 𝑇

0

∫︁ 𝑇

0

cos(𝜆(𝑡− 𝑠)) cos(𝜓0𝑡2) cos(𝜓0𝑠2)𝑑𝑡𝑑𝑡

= 2

∫︁ ∞

0

𝑓(𝜆)
[︀
(𝜇11,𝑇 (𝜆, 0))

2 + (𝜇21,𝑇 (𝜆, 0))
2
]︀
𝑑𝜆 −−−→

𝑇→∞
2

∫︁ ∞

0

𝑓(𝜆)
[︁
(𝜇11,𝑇 (𝜆, 0))

2

+ (𝜇21,𝑇 (𝜆, 0))
2
]︁
𝑑𝜆 = 𝑊

(22)
11 (85)

Аналогiчно

𝑊
(22)
22 = 2

∫︁ ∞

0

𝑓(𝜆)
[︁
(𝜇12,𝑇 (𝜆, 0))

2 + (𝜇22,𝑇 (𝜆, 0))
2
]︁
𝑑𝜆;

𝑊
(22)
12 = 2

∫︁ ∞

0

𝑓(𝜆) [𝜇11,𝑇 (𝜆, 0)𝜇12,𝑇 (𝜆, 0) + 𝜇21(𝜆, 0)𝜇22(𝜆, 0)] 𝑑𝜆; (86)

Маємо далi

𝑊
(22)
33,𝑇 =

2(𝛽0)2

𝑇 2

∫︁ ∞

0

𝑓(𝜆)

∫︁ 𝑇

0

∫︁ 𝑇

0

cos(𝜆(𝑡− 𝑠))𝑡2𝑠2 cos(𝜓0𝑡2 + 𝛽0)

× cos(𝜓0𝑠2 + 𝛽0)𝑑𝑠𝑑𝑡𝑑𝜆 =
2(𝛽0)2

𝑇 2

∫︁ ∞

0

𝑓(𝜆)

[︃(︂∫︁ 𝑇

0

𝑡2 cos(𝜆𝑡) cos(𝜓0𝑠2 + 𝛽0)𝑑𝑡

)︂2

+
(︁
𝑡2 sin(𝜆𝑡) cos(𝜓0𝑠2 + 𝛽0)𝑑𝑡

)︁2 ]︃
𝑑𝜆 =

(𝛽0)2

2(𝜓0)2𝑇 2

∫︁ ∞

0

𝑓(𝜆)

[︃(︁
𝑇 sin(𝜓0𝑇 2 + 𝛽0)
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× cos(𝜆𝑇 )− 𝜇12,𝑇 (𝜆, 𝛽0) + 𝜆

∫︁ 𝑇

0

𝑡 sin(𝜆𝑡) sin(𝜓0𝑡2 + 𝛽0)𝑑𝑡
)︁2

+
(︁
𝑇 sin(𝜓0𝑡2 + 𝛽0)

× sin(𝜆𝑇 )− 𝜇22,𝑇 (𝜆, 𝛽0)− 𝜆

∫︁ 𝑇

0

𝑡 cos(𝜆𝑡) sin(𝜓0𝑡2 + 𝛽0)𝑑𝑡
)︁2]︃

𝑑𝜆

=

(︂
𝛽0

2𝜓0

)︂2

sin2(𝜓0𝑇 2 + 𝛽0) +𝑂(𝑇−1), при 𝑇 → ∞ (87)

Саме в цьому мiсцi доведення використано iснування 4-го спектрального моменту
спектральної щiльностi 𝑓(𝜆) з умовиA2. Це стає зрозумiлим, якщо ми пiдставимо
пiд знаки квадратiв в iнтегралi (87) вiдповiднi вирази з блоку формул (82).

З iншого боку,

𝑊
(22)
23,𝑇 =

2𝛽0

𝑇

∫︁ ∞

0

𝑓(𝜆)

∫︁ 𝑇

0

∫︁ 𝑇

0

cos(𝜆(𝑡− 𝑠))𝑡2 cos(𝜓0𝑡2 + 𝛽0) · cos(𝜓0𝑠2)𝑑𝑠𝑑𝑡𝑑𝜆

=
2(𝛽0)2

𝑇

∫︁ ∞

0

𝑓(𝜆)

[︃(︂∫︁ −𝑇

0

𝑡2 cos(𝜆𝑡) cos(𝜓0𝑡2 + 𝛽0)𝑑𝑡

)︂
·
∫︁ 𝑇

0

cos(𝜆𝑡) cos(𝜓0𝑡2)𝑑𝑡

+

∫︁ 𝑇

0

𝑡2 sin(𝜆𝑡) cos(𝜓0𝑡2 + 𝛽0)𝑑𝑡 ·
∫︁ 𝑇

0

sin(𝜆𝑡) cos(𝜓0𝑡2)𝑑𝑡

]︃
𝑑𝜆

=
𝛽0

𝑇𝜓0

∫︁ ∞

0

𝑓(𝜆)

[︃(︁
𝑇 sin(𝜓0𝑇 2 + 𝛽0) cos(𝜆𝑇 )− 𝜇12,𝑇 (𝜆, 𝛽0)

+ 𝜆

∫︁ 𝑇

0

𝑡 sin(𝜆𝑡) sin(𝜓0𝑡2 + 𝛽0)𝑑𝑡
)︁
𝜇11,𝑇 (𝜆, 0) +

(︁
𝑇 sin(𝜓0𝑇 2

+ 𝛽0) sin(𝜆𝑇 )− 𝜇22,𝑇 (𝜆, 𝛽0)− 𝜆

∫︁ 𝑇

0

𝑡 cos(𝜆𝑡) sin(𝜓0𝑡2 + 𝛽0)𝑑𝑡
)︁
𝜇21,𝑇

]︃
𝑑𝜆

=
𝛽0

𝜓0
sin(𝜓0𝑇 2 + 𝛽0)

∫︁ ∞

0

𝑓(𝜆)
[︁
𝜇11,𝑇 (𝜆, 0) cos(𝜆𝑇 ) + 𝜇21,𝑇 (𝜆, 0) sin(𝜆𝑇 )

]︁
𝑑𝜆

+𝑂(𝑇−1) при 𝑇 → ∞ (88)

Аналогiчно
lim
𝑇→∞

𝑊
(22)
13,𝑇 = 0. (89)

3) Блоки 𝑊
(12)
𝑇 та 𝑊

(21)
𝑇 .

Оскiльки 𝑊
(21)
𝑇 =

(︁
𝑊

(12)
𝑇

)︁*
, то достатньо знайти границю при 𝑇 → ∞

блока 𝑊
(12)
𝑇 . Позначимо −𝐴0 sin(𝜑0𝑡) + 𝐵0 cos(𝜑0𝑡) = 𝛼0 cos(𝜑0𝑡 + 𝛼0), де 𝛼0 =√︀

(𝐴0)2 + (𝐵0)2, 𝑡𝑔𝛼0 = 𝐴0

𝐵0 .
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Покажемо, що величини

𝑊
(12)
11,𝑇 =

1√
𝑇

∫︁ 𝑇

0

∫︁ 𝑇

0

𝐵(𝑡− 𝑠) cos(𝜑0𝑡) cos(𝜓0𝑠2)𝑑𝑡𝑑𝑠;

𝑊
(12)
12,𝑇 =

1√
𝑇

∫︁ 𝑇

0

∫︁ 𝑇

0

𝐵(𝑡− 𝑠) sin(𝜑0𝑡) cos(𝜓0𝑠2)𝑑𝑡𝑑𝑠;

𝑊
(12)
13,𝑇 =

𝛼0

𝑇
3
2

∫︁ 𝑇

0

∫︁ 𝑇

0

𝐵(𝑡− 𝑠)𝑡 cos(𝜑0𝑡+ 𝛼0) cos(𝜓0𝑠2)𝑑𝑡𝑑𝑠;

𝑊
(12)
21,𝑇 =

1√
𝑇

∫︁ 𝑇

0

∫︁ 𝑇

0

𝐵(𝑡− 𝑠) cos(𝜑0𝑡) sin(𝜓0𝑠2)𝑑𝑡𝑑𝑠;

𝑊
(12)
22,𝑇 =

1√
𝑇

∫︁ 𝑇

0

∫︁ 𝑇

0

𝐵(𝑡− 𝑠) sin(𝜑0𝑡) sin(𝜓0𝑠2)𝑑𝑡𝑑𝑠;

𝑊
(12)
23,𝑇 =

𝛼0

𝑇
3
2

∫︁ 𝑇

0

∫︁ 𝑇

0

𝐵(𝑡− 𝑠)𝑡 cos(𝜑0𝑡+ 𝛼0) sin(𝜓0𝑠2)𝑑𝑡𝑑𝑠; (90)

збiгаються до нуля при 𝑇 → ∞.
Нехай 𝐺(𝑡, 𝑠) деяка неперервна функцiя. Розглянемо замiну змiнних в

iнтегралi

𝐼 =

∫︁ 𝑇

0

∫︁ 𝑇

0

𝐵(𝑡− 𝑠)𝐺(𝑡, 𝑠)𝑑𝑡𝑑𝑠 =

∫︁ 𝑇

0

𝐵(𝑢)

[︂∫︁ 𝑇−𝑢

0

𝐺(𝑢+ 𝑣, 𝑣)𝑑𝑣

]︂
𝑑𝑢

+

∫︁ 𝑇

0

𝐵(𝑢)

[︂∫︁ 𝑇−𝑢

0

𝐺(𝑣, 𝑢+ 𝑣)𝑑𝑣

]︂
𝑑𝑢 = 𝐼1 + 𝐼2,

що узагальнює стандартну замiну змiнних в iнтегралi 𝐼 при 𝐺(𝑡, 𝑠) ≡ 1. Зробимо
у внутрiшньому iнтегралi iнтеграла 𝐼2 замiну змiнних 𝑢+ 𝑣 → 𝑣. Тодi матимемо

𝐼2 =
∫︀ 𝑇
0 𝐵(𝑢)

∫︀ 𝑇
𝑢 𝐺(𝑣 − 𝑢, 𝑣)𝑑𝑢𝑑𝑣 та

𝐼 =

∫︁ 𝑇

0

𝐵(𝑢)

[︂∫︁ 𝑇

0

𝐺(𝑣 − 𝑢, 𝑣)𝑑𝑣 −
∫︁ 𝑢

0

𝐺(𝑣 − 𝑢, 𝑣)𝑑𝑣 +

∫︁ 𝑇−𝑢

0

𝐺(𝑢+ 𝑣, 𝑣)𝑑𝑣

]︂
𝑑𝑢.

(91)
Якщо використовувати (91), то у нас пiд знаками iнтегралiв не буде величин
cos
sin

(𝜓0(𝑢+ 𝑣)2), а натомiсть будуть
cos
sin

(𝜓0𝑣2), що спрощує обчислення.

Також зауважимо, що згiдно з формулами (75)-(83),⃒⃒⃒⃒
⃒
∫︁ 𝑔(𝑇,𝑢)

0

cos
sin

(𝜑0𝑣)
cos
sin

(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒
⃒ ⩽ 4√︀

𝜓0
, (92)
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⃒⃒⃒⃒
⃒
∫︁ 𝑔(𝑇,𝑢)

0

𝑣
cos
sin

(𝜑0𝑣)
cos
sin

(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒
⃒ ⩽ 1

𝜓0

(︃
1 +

2𝜑0√︀
𝜓0

)︃
, (93)

де 𝑔(𝑇, 𝑢) – деяка функцiя, що залежить вiд 𝑇 та/або 𝑢.

Використовуючи формули (91)-(93), отримуємо

𝑊
(12)
11,𝑇 =

1√
𝑇

∫︁ 𝑇

0

𝐵(𝑢)
[︁ ∫︁ 𝑇

0

cos(𝜑0𝑣 − 𝜑0𝑢) cos(𝜓0𝑣2)𝑑𝑣

−
∫︁ 𝑢

0

cos(𝜑0𝑣 − 𝜑0𝑢) cos(𝜓0𝑣2)𝑑𝑣 +

∫︁ 𝑇−𝑢

0

cos(𝜑0𝑣 + 𝜑0𝑢) cos(𝜓0𝑣2)𝑑𝑣
]︁
𝑑𝑢

⩽
1√
𝑇

∫︁ 𝑇

0

|𝐵(𝑢)|

[︃ ⃒⃒⃒⃒∫︁ 𝑇

0

cos(𝜑0𝑣) cos(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒
+

⃒⃒⃒⃒∫︁ 𝑇

0

sin(𝜑0𝑣) cos(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒
+

⃒⃒⃒⃒∫︁ 𝑢

0

cos(𝜑0𝑣) cos(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒
+

⃒⃒⃒⃒∫︁ 𝑢

0

sin(𝜑0𝑣) cos(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒
+

⃒⃒⃒⃒∫︁ 𝑇−𝑢

0

cos(𝜑0𝑣) cos(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒
+

⃒⃒⃒⃒∫︁ 𝑇−𝑢

0

sin(𝜑0𝑣) cos(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒ ]︃
𝑑𝑢

⩽
24√︀
𝜓0

1√
𝑇

∫︁ 𝑇

0

|𝐵(𝑢)|𝑑𝑢. (94)

Очевидно, що за умови A1(ii)

1√
𝑇

∫︁ 𝑇

0

|𝐵(𝑢)|𝑑𝑢→ 0 при 𝑇 → ∞. (95)

За умови A1(i) при 𝛼 ∈
(︀
1
2 ; 1
)︀
маємо

1√
𝑇

∫︁ 𝑇

0

|𝐵(𝑢)|𝑑𝑢 =
√
𝑇

∫︁ 1

0

|𝐵(𝑇𝑢)|𝑑𝑢 ⩽

√
𝑇

1− 𝛼
𝐵(𝑇 ) =

𝐿(𝑇 )

1− 𝛼
· 1

𝑇 𝛼−
1
2

→ 0

при 𝑇 → ∞. (96)

Отже, враховуючи (95) та (96), з (94) випливає, що

𝑊
(12)
11,𝑇 → 0 при 𝑇 → ∞. (97)

Аналогiчно,

𝑊
(12)
12,𝑇 ,𝑊

(12)
21,𝑇 ,𝑊

(12)
22,𝑇 → 0 при 𝑇 → ∞. (98)
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Маємо далi

𝑊
(12)
13,𝑇 =

𝛼0

𝑇
3
2

∫︁ 𝑇

0

𝐵(𝑢)
[︁ ∫︁ 𝑇

0

(𝑣 − 𝑢) cos(𝜑0𝑣 − 𝜑0𝑢+ 𝛼0) cos(𝜓0𝑣2)𝑑𝑣

−
∫︁ 𝑢

0

(𝑣 − 𝑢) cos(𝜑0𝑣 − 𝜑0𝑢+ 𝛼0) cos(𝜓0𝑣2)𝑑𝑣

+

∫︁ 𝑇−𝑢

0

(𝑣 + 𝑢) cos(𝜑0𝑣 + 𝜑0𝑢+ 𝛼0) cos(𝜓0𝑣2)𝑑𝑣
]︁
𝑑𝑢

⩽
𝛼0

𝑇
3
2

∫︁ 𝑇

0

|𝐵(𝑢)|

[︃ ⃒⃒⃒⃒∫︁ 𝑇

0

𝑣 cos(𝜑0𝑣) cos(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒
+

⃒⃒⃒⃒∫︁ 𝑇

0

𝑣 sin(𝜑0𝑣) cos(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒
+ 𝑢

⃒⃒⃒⃒∫︁ 𝑇

0

cos(𝜑0𝑣) cos(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒
+ 𝑢

⃒⃒⃒⃒∫︁ 𝑇

0

sin(𝜑0𝑣) cos(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒
+

⃒⃒⃒⃒∫︁ 𝑇

0

𝑣 cos(𝜑0𝑣) cos(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒
+

⃒⃒⃒⃒∫︁ 𝑇

0

𝑣 sin(𝜑0𝑣) cos(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒
+ 𝑢

⃒⃒⃒⃒∫︁ 𝑢

0

cos(𝜑0𝑣) cos(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒
+ 𝑢

⃒⃒⃒⃒∫︁ 𝑢

0

sin(𝜑0𝑣) cos(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒
+

⃒⃒⃒⃒∫︁ 𝑇−𝑢

0

𝑣 cos(𝜑0𝑣) cos(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒
+

⃒⃒⃒⃒∫︁ 𝑇−𝑢

0

𝑣 sin(𝜑0𝑣) cos(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒
+ 𝑢

⃒⃒⃒⃒∫︁ 𝑇−𝑢

0

cos(𝜑0𝑣) cos(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒
+ 𝑢

⃒⃒⃒⃒∫︁ 𝑇−𝑢

0

sin(𝜑0𝑣) cos(𝜓0𝑣2)𝑑𝑣

⃒⃒⃒⃒ ]︃
𝑑𝑢

⩽
𝛼0

𝑇
3
2

∫︁ 𝑇

0

|𝐵(𝑢)|

[︃
6

𝜓0

(︃
1 +

2𝜑0√︀
𝜓0

)︃
+

24√︀
𝜓0
𝑢

]︃
𝑑𝑢

⩽
6𝛼0

𝜓0

(︃
1 +

2𝛼0√︀
𝜓0

)︃
· 1

𝑇
3
2

∫︁ 𝑇

0

|𝐵(𝑢)|𝑑𝑢+ 24𝛼0√︀
𝜓0

· 1√
𝑇

∫︁ 𝑇

0

|𝐵(𝑢)|𝑑𝑢→ 0 при 𝑇 → ∞.

(99)

Аналогiчно
𝑊

(12)
23,𝑇 → 0 при 𝑇 → ∞. (100)

Математичнi сподiвання 𝑊
(12)
31,𝑇 = 𝐸𝜉1𝑇 𝜉

6
𝑇 , 𝑊

(12)
32,𝑇 = 𝐸𝜉2𝑇 𝜉

6
𝑇 , 𝑊

(12)
33,𝑇 = 𝐸𝜉3𝑇 𝜉

6
𝑇 , для

подальшого доведення не знадобляться, достатньо тiльки знати, що 𝐸(𝜉6𝑇 )
2 < ∞

(див. формулу (87)).
З наведених вище пiдрахункiв випливає наступне твердження.
Лема 5. Нехай виконуються умови A1 та A2. Тодi

lim
𝑇→∞

[︃
𝑊𝑇 − 𝑑𝑖𝑎𝑔

(︃
0, 0, 0, 0, 0,

(︂
𝛽0

2𝜓0

)︂2

sin2
(︁
𝜓0𝑇 2 + 𝛽0

)︁)︃]︃
= 𝑊,
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де 𝑊 = 𝑑𝑖𝑎𝑔
(︀
𝑊 (11),𝑊 (22)

)︀
– блочно-дiагональна матриця з блоками

𝑊 (11) = 2𝜋𝑓(𝜑0)𝐻1 = 2𝜋𝑓(𝜑) · 1
2

⎡⎢⎣ 1 0 𝐵0

2

0 1 −𝐴0

2
𝐵0

2 −𝐴0

2
(𝐴0)2+(𝐵0)2

3

⎤⎥⎦ ;

𝑊 (22) =

⎡⎢⎣𝑊 (22)
11 𝑊

(22)
12 0

𝑊
(22)
21 𝑊

(22)
22 0

0 0 0;

⎤⎥⎦ ;

𝑊
(22)
11 = 2

∫︁ ∞

0

𝑓(𝜆
[︁
(𝜇11(𝜆, 0))

2 + (𝜇11(𝜆, 0))
2
]︁
)𝑑𝜆;

𝑊
(22)
22 = 2

∫︁ ∞

0

𝑓(𝜆
[︁
(𝜇12(𝜆, 0))

2 + (𝜇22(𝜆, 0))
2
]︁
)𝑑𝜆; (101)

𝑊
(22)
21 = 2

∫︁ ∞

0

𝑓(𝜆 [𝜇11(𝜆, 0)𝜇12(𝜆, 0) + 𝜇21(𝜆, 0)𝜇22(𝜆, 0)])𝑑𝜆,

причому функцiї 𝜇𝑖𝑗(𝜆, 0), 𝑖, 𝑗 = 1, 2, заданi формулами (81).

Доведення теореми 2. Користуючись результатами леми 3 та леми 5, перейдемо
до доведення асимптотичної нормальностi ОНК параметрiв квазiчирпованого
сигналу. Розглянемо матрицю 𝐻 з леми 3. Використовуючи елементарнi

обчислення, отримуємо, що det(𝐻1) = (𝐴0)2+(𝐵0)2

96 , det(𝐻2) = (𝐶0)2+(𝐷0)2

90 i 𝐻−1 =

𝑑𝑖𝑎𝑔(𝐻−1
1 , 𝐻−1

2 ), де

𝐻−1
1 =

2

(𝐴0)2 + (𝐵0)2

⎡⎣(𝐴0)2 + 4(𝐵0)2 −3𝐴0𝐵0 −6𝐵0

−3𝐴0𝐵0 4(𝐴0)2 + (𝐵0)2 6𝐴0

−6𝐵0 6𝐴0 12

⎤⎦ ; (102)

𝐻−1
2 =

1

2((𝐶0)2 + (𝐷0)2)

⎡⎣4(𝐶0)2 + 9(𝐷0)2 −5𝐶0𝐷0 −15𝐷0

−5𝐶0𝐷0 9(𝐶0)2 + 4(𝐷0)2 15𝐶0

−15𝐷0 15𝐶0 45

⎤⎦ . (103)

Позначимо

𝐾𝑇 =

(︂
𝑑−1
𝑇

(︂
1

2
𝑄′′
𝑇 (𝜃)

)︂
𝑑−1
𝑇

)︂−1

−𝐻−1 → 0 м.н. при 𝑇 → ∞, (104)

а також введемо дiагональну матрицю

𝑐𝑇 = 𝑑𝑖𝑎𝑔(1, 1, 1, 𝑇
1
2 , 𝑇

1
2 , 𝑇

1
2 ). (105)
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Враховуючи позначення (63), (64), (104) та (105), перепишемо (47) у виглядi

𝑐𝑇𝑑𝑇 (𝜃𝑇 − 𝜃0) = 𝑐𝑇𝐾𝑇𝑠
−1
𝑇 𝜉𝑇 + 𝑐𝑇𝐻

−1𝑠−1
𝑇 𝜉𝑇 = 𝑉1𝑇 + 𝑉2𝑇 . (106)

Зауважимо, що 𝑐𝑇𝑑𝑇 (𝜃𝑇−𝜃0) =
(︁
𝑇

1
2 (𝐴𝑇−𝐴0), 𝑇

1
2 (𝐵𝑇−𝐵0), 𝑇

3
2 (𝜑𝑇−𝜑0), 𝑇 (𝐶𝑇−

𝐶0), 𝑇 (𝐷𝑇 −𝐷0), 𝑇 3(𝜓𝑇 − 𝜓0)
)︁*

– це вектор iз формулювання теореми 2.

Розглянемо окремо кожен доданок в (106).

𝑉1𝑇 =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐾11,𝑇 𝜉
1
𝑇 +𝐾12,𝑇 𝜉

2
𝑇 +𝐾13,𝑇 𝜉

3
𝑇 +

𝐾14,𝑇 𝜉
4
𝑇√

𝑇
+

𝐾15,𝑇 𝜉
5
𝑇√

𝑇
+

𝐾16,𝑇 𝜉
6
𝑇

𝑇
3
2

𝐾21,𝑇 𝜉
1
𝑇 +𝐾22,𝑇 𝜉

2
𝑇 +𝐾23,𝑇 𝜉

3
𝑇 +

𝐾24,𝑇 𝜉
4
𝑇√

𝑇
+

𝐾25,𝑇 𝜉
5
𝑇√

𝑇
+

𝐾26,𝑇 𝜉
6
𝑇

𝑇
3
2

𝐾31,𝑇 𝜉
1
𝑇 +𝐾32,𝑇 𝜉

2
𝑇 +𝐾33,𝑇 𝜉

3
𝑇 +

𝐾34,𝑇 𝜉
4
𝑇√

𝑇
+

𝐾35,𝑇 𝜉
5
𝑇√

𝑇
+

𝐾36,𝑇 𝜉
6
𝑇

𝑇
3
2√

𝑇𝐾41,𝑇 𝜉
1
𝑇 +

√
𝑇𝐾42,𝑇 𝜉

2
𝑇 +

√
𝑇𝐾43,𝑇 𝜉

3
𝑇 +𝐾44,𝑇 𝜉

4
𝑇 +𝐾45,𝑇 𝜉

5
𝑇 +

𝐾46,𝑇 𝜉
6
𝑇

𝑇√
𝑇𝐾51,𝑇 𝜉

1
𝑇 +

√
𝑇𝐾52,𝑇 𝜉

2
𝑇 +

√
𝑇𝐾53,𝑇 𝜉

3
𝑇 +𝐾54,𝑇 𝜉

4
𝑇 +𝐾55,𝑇 𝜉

5
𝑇 +

𝐾56,𝑇 𝜉
6
𝑇

𝑇√
𝑇𝐾61,𝑇 𝜉

1
𝑇 +

√
𝑇𝐾62,𝑇 𝜉

2
𝑇 +

√
𝑇𝐾63,𝑇 𝜉

3
𝑇 +𝐾64,𝑇 𝜉

4
𝑇 +𝐾65,𝑇 𝜉

5
𝑇 +

𝐾66,𝑇 𝜉
6
𝑇

𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (107)

Покажемо, що 𝑉1𝑇
P−→ 0 при 𝑇 → ∞. Кожен елемент вектора 𝑉1𝑇 є

лiнiйною комбiнацiєю процесiв 𝜉1𝑇 , 𝜉
2
𝑇 , 𝜉

3
𝑇 , 𝜉

4
𝑇 , 𝜉

5
𝑇 , 𝑇

−1𝜉6𝑇 та елементiв матрицi
𝐾𝑖𝑗,𝑇 , 𝑖, 𝑗 = 1, 6. За формулами (73) та (85)-(89), що описують граничну поведiнку
коварiацiйної матрицi вектора 𝜉𝑇 , отримуємо слабку збiжнiсть процесiв 𝜉

1
𝑇 , 𝜉

2
𝑇 , 𝜉

3
𝑇 ,

𝜉4𝑇 , 𝜉
5
𝑇 до гауссiвських випадкових величин з нульовим середнiм та дисперсiями

𝜋𝑓(𝜑0), 𝜋𝑓(𝜑0), 1
3𝜋𝑓(𝜑

0)
(︀
(𝐴0)2 + (𝐵0)2

)︀
, 𝑊

(22)
11 , 𝑊

(22)
22 (див. вiдповiднi формули).

Величини 𝐾𝑖𝑗,𝑇 , 𝑖, 𝑗 = 1, 6 прямують до нуля м.н. при 𝑇 → ∞, однак, для того,
щоб зробити висновок про збiжнiсть до нуля вектора 𝑉1𝑇 , необхiдно додатково
пояснити граничну поведiнку елементiв

√
𝑇𝐾𝑚𝑛,𝑇 , 𝑚 = 4, 6, 𝑛 = 1, 3. Позначимо

𝐻𝑇 = (𝐻𝑖𝑗,𝑇 )
6
𝑖,𝑗=1 = 𝑑−1

𝑇

(︀
1
2𝑄

′′
𝑇 (𝜃)

)︀
𝑑−1
𝑇 . Тодi кожен елемент 𝐾𝑚𝑛,𝑇 , 𝑚 = 4, 6,

𝑛 = 1, 3, можна зобразити у виглядi

1

det(𝐻1)

∑︁
𝜎∈𝑆𝑠

𝑠𝑖𝑔𝑛(𝜎)𝐻1,𝜎(1),𝑇 · ... ·𝐻𝑅−1,𝜎(𝑅−1) ·𝐻𝑅+1,𝜎(𝑅+1),𝑇 · ... ·𝐻5,𝜎(5),𝑇 , (108)

де 𝑆5 – група перестановок 5-го порядку i, вiдповiдно, сума береться по всiх
перестановках 𝜎 з цiєї групи; 𝑠𝑖𝑔𝑛 позначено знак перестановки, який дорiвнює
1 або -1 залежно вiд парностi числа iнверсiй в нiй. Зауважимо, що у кожному
доданку суми (108) всi множники обмеженi та присутнiй, принаймнi, один
множник з наступного списку:

𝐽
(3)
41 (𝜃) =

1

𝑇

∫︁ 𝑇

0

cos(𝜓𝑡2) cos(𝜑𝑡)𝑑𝑡; 𝐽
(3)
42 (𝜃) =

1

𝑇

∫︁ 𝑇

0

cos(𝜓𝑡2) sin(𝜑𝑡)𝑑𝑡;
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𝐽
(3)
43 (𝜃) =

1

𝑇 2

∫︁ 𝑇

0

cos(𝜓𝑡2)𝑡
(︀
−𝐴 sin(𝜑𝑡) +𝐵 cos(𝜑𝑡)

)︀
𝑑𝑡;

𝐽
(3)
51 (𝜃) =

1

𝑇

∫︁ 𝑇

0

sin(𝜓𝑡2) cos(𝜑𝑡)𝑑𝑡; 𝐽
(3)
52 (𝜃) =

1

𝑇

∫︁ 𝑇

0

sin(𝜓𝑡2) sin(𝜑𝑡)𝑑𝑡;

𝐽
(3)
53 (𝜃) =

1

𝑇 2

∫︁ 𝑇

0

sin(𝜓𝑡2)𝑡
(︀
−𝐴 sin(𝜑𝑡) +𝐵 cos(𝜑𝑡)

)︀
𝑑𝑡; (109)

𝐽
(3)
61 (𝜃) =

1

𝑇 3

∫︁ 𝑇

0

𝑡2
(︀
−𝐶 sin(𝜓𝑡2) +𝐷 cos(𝜓𝑡2)

)︀
cos(𝜑𝑡)𝑑𝑡;

𝐽
(3)
62 (𝜃) =

1

𝑇 3

∫︁ 𝑇

0

𝑡2
(︀
−𝐶 sin(𝜓𝑡2) +𝐷 cos(𝜓𝑡2)

)︀
sin(𝜑𝑡)𝑑𝑡;

𝐽
(3)
63 (𝜃) =

1

𝑇 4

∫︁ 𝑇

0

𝑡2
(︀
−𝐶 sin(𝜓𝑡2) +𝐷 cos(𝜓𝑡2)

)︀
𝑡
(︀
−𝐴 sin(𝜑𝑡) +𝐵 cos(𝜑𝑡)

)︀
𝑑𝑡.

З теореми 1, формул (60) та (61) отримуємо, що величини
√
𝑇𝐽

(3)
𝑖𝑗 (𝜃) → 0 м.н.

при 𝑇 → ∞, 𝑖 = 4, 6, 𝑗 = 1, 3. Наприклад, для елемента 𝐽
(3)
43 (𝜃) матимемо

⃒⃒⃒√
𝑇𝐽

(3)
43 (𝜃)

⃒⃒⃒
⩽
⃒⃒
𝐴𝑇 − 𝐴0

⃒⃒ ⃒⃒⃒⃒ 1

2𝑇
3
2

∫︁ 𝑇

0

𝑡 sin(𝜑𝑡+ 𝜓𝑡2)𝑑𝑡

⃒⃒⃒⃒
+
⃒⃒
𝐴𝑇 − 𝐴0

⃒⃒
×
⃒⃒⃒⃒

1

2𝑇
3
2

∫︁ 𝑇

0

𝑡 sin(−𝜑𝑡+ 𝜓𝑡2)𝑑𝑡

⃒⃒⃒⃒
+ |𝐴0|

⃒⃒⃒⃒
1

2𝑇
3
2

∫︁ 𝑇

0

𝑡 sin(𝜑𝑡+ 𝜓𝑡2)𝑑𝑡

⃒⃒⃒⃒
+ |𝐴0|

⃒⃒⃒⃒
1

2𝑇
3
2

∫︁ 𝑇

0

𝑡 sin(−𝜑𝑡+ 𝜓𝑡2)𝑑𝑡

⃒⃒⃒⃒
+
⃒⃒
𝐵𝑇 −𝐵0

⃒⃒ ⃒⃒⃒⃒ 1

2𝑇
3
2

∫︁ 𝑇

0

𝑡 cos(𝜑𝑡+ 𝜓𝑡2)𝑑𝑡

⃒⃒⃒⃒
+
⃒⃒
𝐵𝑇 −𝐵0

⃒⃒ ⃒⃒⃒⃒ 1

2𝑇
3
2

∫︁ 𝑇

0

𝑡 cos(−𝜑𝑡+ 𝜓𝑡2)𝑑𝑡

⃒⃒⃒⃒
+ |𝐵0|

⃒⃒⃒⃒
1

2𝑇
3
2

∫︁ 𝑇

0

𝑡 cos(𝜑𝑡+ 𝜓𝑡2)𝑑𝑡

⃒⃒⃒⃒
+ |𝐵0|

⃒⃒⃒⃒
1

2𝑇
3
2

∫︁ 𝑇

0

𝑡 cos(−𝜑𝑡+ 𝜓𝑡2)𝑑𝑡

⃒⃒⃒⃒
→ 0 м.н. при 𝑇 → ∞.

Крiм того, матриця 𝐻𝑇 збiгається до невиродженої матрицi 𝐻, тому при 𝑇 →
∞ det(𝐻𝑇 ) → det(𝐻) ̸= 0. Отже, можемо зробити висновок, що елементи√
𝑇𝐾𝑚𝑛,𝑇 → 0 м.н. при 𝑇 → ∞, 𝑚 = 4, 6,𝑛 = 1, 3.

Враховуючи вище наведенi мiркування, отримуємо, що координати вектора
𝑉1𝑇 прямують до 0, принаймнi, за ймовiрнiстю при 𝑇 → ∞.
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З iншого боку,

𝑉2𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ℎ11𝜉
1
𝑇 + ℎ12𝜉

2
𝑇 + ℎ13𝜉

3
𝑇

ℎ21𝜉
1
𝑇 + ℎ22𝜉

2
𝑇 + ℎ23𝜉

3
𝑇

ℎ31𝜉
1
𝑇 + ℎ32𝜉

2
𝑇 + ℎ33𝜉

3
𝑇

ℎ44𝜉
4
𝑇 + ℎ45𝜉

5
𝑇 +

ℎ46𝜉
6
𝑇

𝑇

ℎ54𝜉
4
𝑇 + ℎ55𝜉

5
𝑇 +

ℎ56𝜉
6
𝑇

𝑇

ℎ64𝜉
4
𝑇 + ℎ65𝜉

5
𝑇 +

ℎ66𝜉
6
𝑇

𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, де ℎ𝑖𝑗, 𝑖, 𝑗 = 1, 6− елементи матрицi 𝐻−1. (110)

Величини ℎ46𝜉
6
𝑇

𝑇 , ℎ56𝜉
6
𝑇

𝑇 , ℎ66𝜉
6
𝑇

𝑇 збiгаються до нуля у середньому квадратичному. Тодi
випадковий вектор 𝑐𝑇𝑑𝑇 (𝜃𝑇 − 𝜃0) слабко збiгається до гауссiвського випадкового
вектора:

lim
𝑇→∞

𝑐𝑇𝑑𝑇 (𝜃𝑇 − 𝜃0) =

⎡⎢⎢⎢⎢⎢⎢⎣
ℎ11𝜉

1 + ℎ12𝜉
2 + ℎ13𝜉

3

ℎ21𝜉
1 + ℎ22𝜉

2 + ℎ23𝜉
3

ℎ31𝜉
1 + ℎ32𝜉

2 + ℎ33𝜉
3

ℎ44𝜉
4 + ℎ45𝜉

5

ℎ54𝜉
4 + ℎ55𝜉

5

ℎ64𝜉
4 + ℎ65𝜉

5

⎤⎥⎥⎥⎥⎥⎥⎦ (111)

з коварiацiйною матрицею
Σ = 𝑑𝑖𝑎𝑔(Σ1,Σ2), (112)

де

Σ1 =
4𝜋𝑓(𝜑0)

(𝐴0)2 + (𝐵0)2

⎡⎣(𝐴0)2 + 4(𝐵0)2 −3𝐴0𝐵0 −6𝐵0

−3𝐴0𝐵0 4(𝐴0)2 + (𝐵0)2 6𝐴0

−6𝐵0 6𝐴0 12

⎤⎦ ; (113)

Σ2 =
1

4((𝐶0)2 + (𝐷0)2)2

⎡⎣4(𝐶0)2 + 9(𝐷0)2 −5𝐶0𝐷0

−5𝐶0𝐷0 9(𝐶0)2 + 4(𝐷0)2

−15𝐷0 15𝐶0

⎤⎦×

[︃
𝑊

(22)
11 𝑊

(22)
12

𝑊
(22)
21 𝑊

(22)
22

]︃

×
[︂
4(𝐶0)2 + 9(𝐷0)2 −5𝐶0𝐷0 −15𝐷0

−5𝐶0𝐷0 9(𝐶0)2 + 4(𝐷0)2 15𝐶0

]︂
, (114)

а величини 𝑊
(22)
11 ,𝑊

(22)
22 ,𝑊

(22)
12 = 𝑊

(22)
21 задано формулами (85), (86) та (81).

Теорему 2 доведено.

Наслiдок 1. За умовА1 таА2 для довiльних 𝛿𝑖 ∈
(︀
0, 12
)︀
, 𝑖 = 1, 2, 3; 𝛿𝑗 ∈ (0, 1),

𝑗 = 4, 5, 6, випадковi величини 𝑇
1
2−𝛿1(𝐴𝑇 −𝐴0), 𝑇

1
2−𝛿2(𝐵𝑇 −𝐵0), 𝑇

3
2−𝛿3(𝜑𝑇 −−𝜑0),

𝑇 1−𝛿4(𝐶𝑇 − 𝐶0), 𝑇 1−𝛿5(𝐷𝑇 −𝐷0), 𝑇 3−𝛿6(𝜓𝑇 − 𝜓0)
P−→ 0 при 𝑇 → ∞.

Наслiдок 2. Якщо 𝑟𝑎𝑛𝑘(ℛ) = 5 (означення ℛ див. нижче), то 𝑟𝑎𝑛𝑘(𝑊 ) = 5,
тобто нормована ОНК 𝑐𝑇𝑑𝑇 (𝜃𝑇 − 𝜃0) асимптотично при 𝑇 → ∞ має сингулярний
нормальний розподiл.
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Proof. Матрицю𝑊 з (112) можна записати як добуток трьох блочно-дiагональних
матриць

Σ =

[︂
𝑅1 0
0 𝑅2

]︂
×
[︂
ℛ1 0
0 ℛ2

]︂
×
[︂
𝑅1 0
0 𝑅2

]︂*
= 𝑅ℛ𝑅*,

де 𝑅1 = 𝐻−1
1 (формула (102)), 𝑅2 – це матриця 𝐻−1

2 (формула (103)) без
останнього стовпчика, тобто 𝑅 – матриця порядку 6 × 5. Матриця ℛ є
коварiацiйною матрицею граничного випадкового вектора 𝜉 = (𝜉1, 𝜉2, 𝜉3, 𝜉4, 𝜉5)

*,
i ми припускаємо, що 𝑟𝑎𝑛𝑘(ℛ) = 5.

Розглянемо квадратну матрицю 𝑀 матрицi 𝑅, отриману викресленням
останнього рядка матрицi 𝑅. Тодi (див. текст перед формулою (102))

det𝑀 = det𝐻−1
1 × det

(︂
0, 5

(𝐶0)2 + (𝐷0)2

[︂
4(𝐶0)2 + 9(𝐷0)2 −5𝐶0𝐷0

−5𝐶0𝐷0 9(𝐶0)2 + 4(𝐷0)2

]︂)︂
=

864

(𝐴0)2 + (𝐵0)2
> 0.

Отже 𝑟𝑎𝑛𝑘(𝑅) = 𝑟𝑎𝑛𝑘(𝑅*) = 5, 𝑟𝑎𝑛𝑘(𝑅ℛ) = 𝑟𝑎𝑛𝑘(𝑅) = 5 i 𝑟𝑎𝑛𝑘(Σ) =
𝑟𝑎𝑛𝑘(𝑅ℛ𝑅*) = 𝑟𝑎𝑛𝑘(𝑅ℛ) = 5.
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Abstract. The paper considers a continuous-time elementary quasi-chirped signal observed
against the background of additive strongly or weakly dependent Gaussian random noise. As an
estimate of the unknown parameters of this signal, the least squares estimate (LSE) is considered.
The asymptotic properties of the LSE of the studied signal were considered and theorems on the
strong consistency and asymptotic normality of the LSE of the unknown parameters of the quasi-
chirped signal were obtained.
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