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Анотацiя

У статтi розглянуто приклади знаходження векторного потенцiалу соленоїдаль-
ного поля, що визначається рiвнiстю 𝐹 = ∇ × 𝑎⃗ , де 𝑎⃗ — векторний потенцiал, ∇
— оператор Гамiльтона; та деякi його застосування. На вiдмiну вiд потенцiального
поля, для якого знаходження його скалярного потенцiалу 𝑢 = 𝑢(𝑥, 𝑦, 𝑧) пов’язано з
незалежнiстю вiдповiдного криволiнiйного iнтеграла вiд шляху iнтегрування, яке
добре вивчено, знаходження векторного потенцiалу значно складнiше та потре-
бує розв’язання вiдповiдної системи лiнiйних диференцiальних рiвнянь першого
порядку в частинних похiдних. Зазначено, що такий потенцiал визначається з то-
чнiстю до градiєнта будь-якої скалярної функцiї. Також продемонстровано можли-
вiсть розкладу довiльного векторного поля на суму потенцiальної та соленоїдальної
складових. Наведено приклади знаходження векторного потенцiалу соленоїдаль-
ного та гармонiчного полiв. Отриманi результати можуть бути застосованi для
розв’язання задач з електромагнiтної теорiї поля, математичної фiзики та прикла-
дної математики.
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1 Основнi поняття

Рiвнiсть 𝐹 = ∇𝑢 є умовою того, що векторне поле, породжене 𝐹 , де 𝑢 — деяка
скалярна функцiя, є потенцiальним, а 𝑢 = 𝑢(𝑥, 𝑦, 𝑧) — його потенцiалом. Якщо
таке поле задане, то знайти його дуже важливу характеристику 𝑢, використову-
ючи незалежнiсть вiдповiдного криволiнiйного iнтеграла вiд шляху iнтегрування,
а отже й те, що диференцiальна форма 𝐹 · 𝑑𝑟⃗ є повним диференцiалом, — зовсiм
нескладно.

Iнша ситуацiя iз соленоїдальним полем. Знову ж таки, iз рiвностi 𝐹 = ∇ × 𝑎⃗
випливає, що поле, породжене 𝐹 = (𝑃,𝑄,𝑅) є соленоїдальним, де 𝑎⃗ = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧)
— його векторний потенцiал, знайти який значно складнiше.

Дiйсно, маємо таку систему лiнiйних диференцiальних рiвнянь першого по-
рядку в частинних похiдних у координатнiй формi:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕𝑎𝑧
𝜕𝑦

− 𝜕𝑎𝑦
𝜕𝑧

= 𝑃,

𝜕𝑎𝑥
𝜕𝑧

− 𝜕𝑎𝑧
𝜕𝑥

= 𝑄,

𝜕𝑎𝑦
𝜕𝑥

− 𝜕𝑎𝑥
𝜕𝑦

= 𝑅,

розв’язання якої викликає певнi труднощi.
Зауваження. Якщо iснує вектор 𝑎⃗, що задовольняє цiй системi, то i вектор

𝑎⃗ + ∇𝑓 для будь-якої неперервно диференцiйованої скалярної функцiї 𝑓(𝑥, 𝑦, 𝑧)
також задовольняє системi, бо ∇× (∇𝑓) = 0⃗. Це означає, що векторний потенцiал
соленоїдального поля визначається неоднозначно, так само, як i потенцiал 𝑢 для
потенцiального поля, що допомагає спростити розв’язання системи.

Вiдзначимо також той факт, що будь-яке векторне поле 𝐹 можна подати у
виглядi:

𝐹 = 𝑈⃗ + 𝑉⃗ ,

де 𝑈⃗ — потенцiальне поле, а 𝑉⃗ — соленоїдальне. Якщо поле задовольняє одночасно
умовам ∇× 𝐹 = 0 та ∇ · 𝐹 = 0, то воно називається гармонiчним.

2 Областi застосування

1. Електромагнетизм та електротехнiка. У класичнiй електродинамiцi
(зокрема в рiвняннях Максвелла) векторний потенцiал 𝑎⃗ є ключовою вели-
чиною.

� Векторний потенцiал використовується для визначення магнiтного поля за
формулою:

𝐵⃗ = ∇× 𝑎⃗,
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де 𝐵⃗ − вектор магнiтної iндукцiї (магнiтне поле), ∇ − оператор ротора,
який визначає обертальну або вихрову складову векторного поля.

� У випадках, коли магнiтне поле не має простої структури, векторний потен-
цiал дозволяє спростити обчислення.

� В електродвигунах, трансформаторах, котушках та iнших iндуктивних еле-
ментах векторний потенцiал використовують для моделювання розподiлу
магнiтних полiв.

2. Квантова механiка. У квантовiй теорiї векторний потенцiал є не лише
допомiжною змiнною, а безпосередньо впливає на динамiку частинок.

� Ефект Агаронова–Бома є чiтким прикладом, де електрон вiдчуває дiю
векторного потенцiалу навiть у зонi з нульовим магнiтним полем. Експери-
ментально пiдтверджено, що фаза хвильової функцiї змiнюється залежно
вiд векторного потенцiалу на шляху частинки:

Δ𝜙 =
𝑞

ℏ

∫︁
𝑎⃗ · 𝑑𝑟⃗,

деΔ𝜙− змiна фази хвильової функцiї частинки, 𝑞 − електричний заряд, ℏ−
приведена стала Планка,

∫︀
𝑎⃗·𝑑𝑟⃗ − криволiнiйний iнтеграл уздовж траєкторiї

руху частинки.

� Векторний потенцiал у квантовiй механiцi впливає не лише на силу, як у
класичнiй фiзицi, а на саму хвильову функцiю, зокрема на її фазу, що змi-
нює спостережуванi iнтерференцiйнi ефекти. Тому векторний потенцiал є
фiзично значущим об’єктом, навiть якщо магнiтне поле дорiвнює нулю.

3. Суперпровiднiсть. У фiзицi надпровiдникiв векторний потенцiал 𝑎⃗ вi-
дiграє ключову роль у математичних моделях, зокрема в теорiї Гiнзбур-

га–Ландау. Ця теорiя описує поведiнку надпровiдного стану за допомогою ком-
плексної хвильової функцiї 𝜓, що характеризує щiльнiсть надпровiдних електро-
нiв. У рiвняннях Гiнзбурга–Ландау векторний потенцiал входить у коварiантний
градiєнт: (︂

−𝑖ℏ∇− 2𝑒

𝑐
𝑎⃗

)︂2

𝜓,

де 𝑖 − уявна одиниця (𝑖2 = −1), 2𝑒 − заряд куперiвської пари (двох електро-
нiв), ℏ − приведена стала Планка, 𝑎⃗ − векторний потенцiал магнiтного поля, ∇
− оператор градiєнта в просторi, який описує змiну функцiї у просторi (дифе-
ренцiювання за координатами), c − швидкiсть свiтла у вакуумi, 𝜓 − комплексна
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хвильова функцiя, що описує макроскопiчний стан надпровiдника (наприклад,
щiльнiсть куперiвських пар).

Це означає, що векторний потенцiал визначає проникнення магнiтного поля в
надпровiдник, формування магнiтних вихорiв та ефекти магнiтного екранування
(ефект Мейснера). Вiн також застосовується в розрахунках струмiв у надпро-
вiдних контурах.

4. Аеродинамiка та гiдродинамiка. У механiцi рiдин та газiв векторний
потенцiал використовується для опису нестискаємих потокiв, тобто таких, для
яких дивергенцiя вектора швидкостi дорiвнює нулю:

∇ · 𝑣⃗ = 0,

де 𝑣⃗ − вектор швидкостi (𝑣⃗ = 𝑣𝑥𝑖 + 𝑣𝑦𝑗⃗ + 𝑣𝑧𝑘⃗), ∇ · 𝑣⃗ − дивергенцiя вектора
швидкостi.

У цьому випадку поле швидкостi можна подати як ротор деякого векторного
потенцiалу:

𝑣⃗ = ∇× 𝑎⃗𝑣,

де ∇× 𝑎𝑣 − ротор векторного потенцiалу швидкостi.
Цей пiдхiд:

1) дозволяє зменшити кiлькiсть рiвнянь для чисельного моделювання;

2) полегшує побудову вихрових моделей;

3) широко застосовується у задачах турбулентностi, аеродинамiки лiтакiв, гi-
дравлiки трубопроводiв тощо.

5. Комп’ютерне моделювання. У сучасних чисельних методах — таких
як метод скiнченних елементiв (англ. Finite element method) та метод граничних
елементiв (англ. Boundary element method) — векторний потенцiал 𝑎⃗ часто вико-

ристовується замiсть магнiтного поля 𝐵⃗, оскiльки вiн:

� забезпечує бiльш точнi розв’язки;

� спрощує постановку граничних умов;

� дозволяє зручнiше формувати рiвняння для їх обчислення.

Це особливо корисно в електротехнiцi, машинобудуваннi та медицинi (наприклад,
у моделюваннi магнiтно−резонансної томографiї, електромагнiтних полiв у тка-
нинах тощо).
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3 Приклади

Приклад 1. Задано поле: 𝐹 = 3𝑥2𝑦 𝑖⃗− 2𝑥𝑦2 𝑗⃗− 2𝑥𝑦𝑧 𝑘⃗. Знайдемо його векторний
потенцiал 𝑎⃗ = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧). Перевiримо, що поле є соленоїдальним:

∇ · 𝐹 =
𝜕𝑃

𝜕𝑥
+
𝜕𝑄

𝜕𝑦
+
𝜕𝑅

𝜕𝑧
= 6𝑥𝑦 − 4𝑥𝑦 − 2𝑥𝑦 = 0.

Покладемо 𝑎𝑧 = 𝑧4.
Маємо систему: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑃 = 3𝑥2𝑦 = −𝜕𝑎𝑦
𝜕𝑧

,

𝑄 = −2𝑥𝑦2 =
𝜕𝑎𝑥
𝜕𝑧

,

𝑅 = −2𝑥𝑦𝑧 =
𝜕𝑎𝑦
𝜕𝑥

− 𝜕𝑎𝑥
𝜕𝑦

.

Звiдки, iнтегруючи, знаходимо:

𝑎𝑥 = −2𝑥𝑦2𝑧, 𝑎𝑦 = −3𝑥2𝑦𝑧.

Отже,
𝑎⃗ = −2𝑥𝑦2𝑧 𝑖⃗− 3𝑥2𝑦𝑧 𝑗⃗ + 𝑧4 𝑘⃗.

Перевiрка:

∇× 𝑎⃗ =

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝑖⃗ 𝑗⃗ 𝑘⃗

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
−2𝑥𝑦2𝑧 −3𝑥2𝑦𝑧 𝑧4

⃒⃒⃒⃒
⃒⃒⃒⃒ = 𝑖⃗(0 + 3𝑥2𝑦) + 𝑗⃗(−2𝑥𝑦2 − 0) + 𝑘⃗(−2𝑥𝑦𝑧) = 𝐹 .

Приклад 2. Задано поле: 𝐹 = 8𝑥𝑦 𝑖⃗+ (3𝑥2 − 𝑦2 − 2𝑦) 𝑗⃗ + (𝑧 + 𝑥2𝑦) 𝑘⃗.

Представимо його як 𝐹 = 𝑈⃗ + 𝑉⃗ , де 𝑈⃗ — потенцiальне, а 𝑉⃗ — соленоїдальне.
Знайдемо ротор:

∇× 𝐹 = ∇× 𝑉⃗ =

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝑖⃗ 𝑗⃗ 𝑘⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
8𝑥𝑦 3𝑥2 − 𝑦2 − 2𝑦 𝑧 + 𝑥2𝑦

⃒⃒⃒⃒
⃒⃒⃒⃒ = 𝑥2 𝑖⃗− 2𝑥𝑦 𝑗⃗ − 2𝑥 𝑘⃗.

Система для 𝑉⃗ = 𝑉𝑥 𝑖⃗+ 𝑉𝑦 𝑗⃗ + 𝑉𝑧 𝑘⃗, при 𝑉𝑦 = −𝑦2:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕𝑉𝑧
𝜕𝑦

= 𝑥2,

𝜕𝑉𝑥
𝜕𝑧

− 𝜕𝑉𝑧
𝜕𝑥

= −2𝑥𝑦,

−𝜕𝑉𝑥
𝜕𝑦

= −2𝑥.
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Звiдки:
𝑉𝑥 = 2𝑥𝑦, 𝑉𝑦 = −𝑦2, 𝑉𝑧 = 𝑥2𝑦.

Отже:

𝑉⃗ = 2𝑥𝑦 𝑖⃗− 𝑦2 𝑗⃗ + 𝑥2𝑦 𝑘⃗, 𝑈⃗ = 𝐹 − 𝑉⃗ = 6𝑥𝑦 𝑖⃗+ (3𝑥2 − 2𝑦) 𝑗⃗ + 𝑧 𝑘⃗.

Перевiрка:
∇× 𝑈⃗ = 0⃗, ∇ · 𝑉⃗ = 0.

Для поля 𝑈⃗ знайдемо його потенцiал 𝑢 = 𝑢(𝑥, 𝑦, 𝑧). Зрозумiло, що 𝑈⃗ = ∇𝑢, де

𝑢 =

∫︁ 𝑥

0

0 𝑑𝑡+

∫︁ 𝑦

0

(3𝑥2 − 2𝑡) 𝑑𝑡+

∫︁ 𝑧

0

𝑡 𝑑𝑡 = 3𝑥2𝑦 − 𝑦2 + (1/2)𝑧2 + 𝐶.

Перевiрка:
𝜕𝑢

𝜕𝑥
= 6𝑥𝑦;

𝜕𝑢

𝜕𝑦
= 3𝑥2 − 2𝑦;

𝜕𝑢

𝜕𝑧
= 𝑧.

Знайдемо тепер векторний потенцiал поля 𝑉⃗ .Маємо 𝑉⃗ = ∇×𝑎⃗. Для знаходження
𝑎⃗ = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧), вибираючи 𝑎𝑥 = 0, розв’язуємо систему:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝑎𝑧
𝜕𝑦

− 𝜕𝑎𝑦
𝜕𝑧

= 2𝑥𝑦,

𝜕𝑎𝑧
𝜕𝑥

= −𝑦2,
𝜕𝑎𝑦
𝜕𝑥

= 𝑥2𝑦.

Розв’язавши систему, маємо:

𝑎𝑧 = 𝑥𝑦2, 𝑎𝑦 =
𝑥3𝑦

3
⇒ 𝑎⃗ =

(︂
0;

𝑥3𝑦

3
; 𝑥𝑦2

)︂
.

Перевiрка:

∇× 𝑎⃗ =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑖⃗ 𝑗⃗ 𝑘⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

0
𝑥3𝑦

3
𝑥𝑦2

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ = 2𝑥𝑦𝑖− 𝑦2⃗𝑗 + 𝑥2𝑦𝑘⃗.

Приклад 3. Розглянемо просторове електричне поле, створене точковим заря-
дом. Перевiримо, що воно є гармонiчним, тобто таким, яке задовольняє одночасно
умови:

∇ · 𝐹 = 0,∇× 𝐹 = 0⃗.
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Маємо векторне поле:

𝐹 =
𝑟⃗

𝑟3
, 𝑟⃗ = 𝑥𝑖+ 𝑦𝑗⃗ + 𝑧𝑘⃗, де 𝑟 =

√︀
𝑥2 + 𝑦2 + 𝑧2.

Знайдемо дивергенцiю:

div𝐹 =
(︁ 𝑥
𝑟3

)︁′
𝑥
+
(︁ 𝑦
𝑟3

)︁′
𝑦
+
(︁ 𝑧
𝑟3

)︁′
𝑧
=

3𝑟2 − 3
(︀
𝑥2 + 𝑦2 + 𝑧2

)︀
𝑟5

= 0.

Знайдемо ротор:

rot𝐹 = ∇× 𝐹 =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑖⃗ 𝑗⃗ 𝑘⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑥

𝑟3
𝑦

𝑟3
𝑧

𝑟3

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ = 𝑖⃗

(︂
3𝑦𝑧 − 3𝑦𝑧

𝑟5

)︂
+ 𝑗⃗ · 0 + 𝑘⃗ · 0 = 0⃗.

Отже, дiйсно, векторне поле є гармонiчним.
Оскiльки 𝐹 − потенцiальне поле, то знайдемо його потенцiал 𝑢 = 𝑢(𝑥, 𝑦, 𝑧) +

𝐶 :

𝑢 =

∫︁ 𝑥

0

𝑡𝑑𝑡

(
√
𝑡2 + 1)3

+

∫︁ 𝑦

0

𝑡𝑑𝑡

(
√
𝑥2 + 𝑡2 + 1)3

+

∫︁ 𝑧

1

𝑡𝑑𝑡

(
√︀
𝑥2 + 𝑦2 + 𝑡2)3

+ 𝐶

=
1

2
· (−2) · 1√

𝑡2 + 1

⃒⃒⃒⃒𝑥
0

− 1√
𝑥2 + 1 + 𝑡2

⃒⃒⃒⃒𝑦
0

− 1√︀
𝑥2 + 𝑦2 + 𝑡2

⃒⃒⃒⃒
⃒
𝑧

0

+ 𝐶 = 𝐶 − 1

𝑟
.

Перевiрка:
𝜕𝑢

𝜕𝑥
=
𝑥

𝑟3
;
𝜕𝑢

𝜕𝑦
=

𝑦

𝑟3
;
𝜕𝑢

𝜕𝑧
=

𝑧

𝑟3
.

Але 𝐹 також i соленоїдальне поле. Знайдемо його векторний потенцiал.
𝑎⃗ = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧), виберемо 𝑎𝑥 = 0. Тодi маємо систему:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑎𝑧
𝜕𝑦

− 𝜕𝑎𝑦
𝜕𝑧

=
𝑥

𝑟3
,

−𝜕𝑎𝑧
𝜕𝑥

=
𝑦

𝑟3
⇒ 𝑎𝑧 = −𝑦

∫︁
𝑑𝑥(︃√︂(︁√︀

𝑦2 + 𝑧2
)︁2

+ 𝑥2

)︃3 = − 𝑥𝑦

𝑟(𝑦2 + 𝑧2)
,

𝜕𝑎𝑦
𝜕𝑥

=
𝑧

𝑟3
⇒ 𝑎𝑦 =

𝑧𝑥

𝑟(𝑦2 + 𝑧2)
,
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тобто

𝑎⃗ = (0; 𝑎𝑦; 𝑎𝑧) =

(︂
0;

𝑥𝑧

𝑟(𝑦2 + 𝑧2)
;− 𝑥𝑦

𝑟(𝑦2 + 𝑧2)

)︂
.

Перевiрка:

∇× 𝑎⃗ =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑖⃗ 𝑗⃗ 𝑘⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

0
𝑥𝑧

𝑟(𝑦2 + 𝑧2)
− 𝑥𝑦

𝑟(𝑦2 + 𝑧2)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ = 𝑖⃗

(︃(︂
− 𝑥𝑦

𝑟(𝑦2 + 𝑧2)

)︂′

𝑦

−
(︂

𝑥𝑧

𝑟(𝑦2 + 𝑧2)

)︂′

𝑧

)︃

+ 𝑗⃗

(︂
𝑥𝑦

𝑟(𝑦2 + 𝑧2)

)︂′

𝑥

+ 𝑘⃗

(︂
𝑥𝑧

𝑟(𝑦2 + 𝑧2)

)︂′

𝑥

=
(︁ 𝑥
𝑟3
,
𝑦

𝑟3
,
𝑧

𝑟3

)︁
.

Дiйсно:

(︂
𝑥𝑦

𝑟(𝑦2 + 𝑧2)

)︂′

𝑥

=
𝑦

𝑦2 + 𝑧2
·
(︁𝑥
𝑟

)︁′
𝑥
=

𝑦

𝑦2 + 𝑧2
·
𝑟 − 𝑥 · 𝑥

𝑟
𝑟2

=
𝑦

𝑦2 + 𝑧2
· 𝑟

2 − 𝑥2

𝑟3
;

(︂
𝑥𝑧

𝑟(𝑦2 + 𝑧2)

)︂′

𝑥

=
𝑧

𝑦2 + 𝑟2
· 𝑟

2 − 𝑥2

𝑟3
=

𝑧

𝑟3
;

(︂
− 𝑥𝑦

𝑟(𝑦2 + 𝑧2)

)︂′

𝑦

−
(︂

𝑥𝑧

𝑟(𝑦2 + 𝑧2)

)︂′

𝑧

= −𝑥

[︃(︂
𝑦

𝑟(𝑦2 + 𝑧2)

)︂′

𝑦

+

(︂
𝑧

𝑟(𝑦2 + 𝑧2)

)︂′

𝑧

]︃
=
𝑥

𝑟3
.

4 Висновок

У данiй статтi було розглянуто деякi властивостi векторного потенцiалу соленої-
дального поля, яке вiдiграє ключову роль у багатьох галузях фiзики та прикла-
дної математики. Продемонстровано, що на вiдмiну вiд скалярного потенцiалу для
потенцiальних полiв, знаходження векторного потенцiалу вимагає розв’язання си-
стеми лiнiйних диференцiальних рiвнянь першого порядку в частинних похiдних
та є суттєво складнiшим завданням.

Наведенi приклади обчислення векторного потенцiалу для конкретних солено-
їдальних та гармонiчних полiв. Окремо проаналiзовано неоднозначнiсть векторно-
го потенцiалу, яка зумовлена можливiстю додавання градiєнта скалярної функцiї
без змiни поля.

Особливу увагу придiлено застосуванням векторного потенцiалу в еле-
ктромагнетизмi, квантовiй механiцi, теорiї надпровiдностi, гiдродинамiцi та
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комп’ютерному моделюваннi. Отриманi результати мають як теоретичне, так i
практичне значення, зокрема для розв’язання задач з електродинамiки, мате-
матичної фiзики, а також при побудовi обчислювальних моделей у технiчних i
природничих науках.

На завершення автори висловлюють подяку Бiлому О.Г. за постановку задачi
та кориснi обговорення.
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Abstract. The article discusses examples of determining the vector potential of a solenoidal
field, which is defined by the relation 𝐹 = ∇ × 𝑎⃗, where 𝑎⃗ is the vector potential and ∇ is the
Hamiltonian operator, as well as some of its applications. Unlike the case of a potential field, for
which determining the scalar potential 𝑢 = 𝑢(𝑥, 𝑦, 𝑧) is related to the path-independence of the
corresponding line integral — a well-studied issue — the determination of a vector potential is
significantly more complex and requires solving an appropriate system of first-order linear partial
differential equations. It is noted that such a potential is defined up to the gradient of an arbitrary
scalar function. The possibility of decomposing an arbitrary vector field into the sum of its potential
and solenoidal components is also demonstrated. Examples of determining the vector potential for
solenoidal and harmonic fields are provided. The obtained results can be applied to solving problems
in electromagnetic field theory, mathematical physics, and applied mathematics.

Keywords: Vector fields; potential, solenoidal, and harmonic fields; vector potential of

solenoidal and harmonic fields; Hamiltonian operator (∇); applications of vector potential.
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