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Анотацiя

У статтi розглянуто вибiрково неперервне гауссiвське однорiдне та iзотропне
сильно залежне випадкове поле R3 та iнтеграл за кубом [0, 𝑇 ]3, який можна iнтер-
претувати як фiнiтне перетворення Фур’є цього поля. Доведено, що рiвномiрна за
частотами норма такого усередненого iнтеграла майже напевно збiгається до нуля,
якщо T прямує до нескiнченостi. Отриманий результат має самостiйний матема-
тичний iнтерес та може бути використаним у доведеннi сильної консистентностi
оцiнки найменших квадратiв параметрiв польових тригонометричних моделей ре-
гресiї, в яких випадковий шум є випадковим полем описаного вигляду.

Ключовi слова: однорiдне та iзотропне випадкове поле, сильно залежне ви-
падкове поле, повiльно змiнна на нескiнченностi функцiя.
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O.V. Dykyi, A.V. Ivanov (2025)

1 Вступ

Елементи класичної теорiї випадкових полiв разом з усiма поняттями цiєї те-
орiї, що використано у подальшому текстi, мiстяться, наприклад, у монографiях
[1], [2].

Нехай 𝑡 = (𝑡1, 𝑡2, 𝑡3), ||𝑡|| =
√︀
𝑡21 + 𝑡22 + 𝑡23, 𝜀 =

{︀
𝜀 (𝑡) , 𝑡 ∈ R3

}︀
є випадковим

полем, заданим на повному ймовiрнiсному просторi (Ω,ℱ , 𝑃 ). Зробимо наступне
припущення.

А. 𝜀 – вибiрково неперервне однорiдне гауссiвське поле з нульовим середнiм i
коварiацiйною функцiєю 𝐵 (𝑡) = 𝐸𝜀 (𝑡) 𝜀 (0), 𝑡 ∈ R3, що задовольняє одну з умов:

(i) 𝜀 – iзотропне поле i 𝐵 (𝑡) = ̃︀𝐵 (||𝑡||) = 𝐿 (||𝑡||) /||𝑡||𝛼, 𝛼 ∈ (0, 2), з неспадною
повiльно змiнною на нескiнченностi функцiєю 𝐿;
(ii) 𝐵 ∈ 𝐿1

(︀
R3
)︀
.

В основнiй частинi роботи спочатку доведено посилений рiвномiрний закон ве-
ликих чисел (ЗВЧ) за виконання умови A(i). Пiсля цього аналогiчне твердження
доведено за умови A(ii).

2 Посилений рiвномiрний ЗВЧ

У цьому роздiлi доведено рiвномiрний посилений ЗВЧ для фiнiтного перетво-
рення Фур’є випадкового поля 𝜀. Позначимо 𝜙 = (𝜙1, 𝜙2, 𝜙3) ∈ R3. Аналогiчний
результат для поля 𝜀 на площинi отримано в роботi [3].

Теорема 2.1. Якщо виконано умову А(i), то при 𝑇 →∞

𝜉3(𝑇 ) = sup
𝜙∈R3

𝑇−3

⃒⃒⃒⃒
⃒⃒⃒ ∫︁
[0,𝑇 ]

3

𝑒𝑖⟨𝜙,𝑡⟩𝜀 (𝑡) 𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒→ 0 м.н. (1)

Доведення. Позначимо вираз пiд знаком супремуму в (1) 𝜂3 (𝜙;𝑇 ). Тодi за теоре-
мою Фубiнi

𝜂23 (𝜙;𝑇 ) = 𝑇−6
∫︁

[0,𝑇 ]
6

exp {−𝑖 ⟨𝜙, 𝑡− 𝑠⟩}×

×𝜀 (𝑡1, 𝑡2, 𝑡3) 𝜀 (𝑠1, 𝑠2, 𝑠3) 𝑑𝑡1𝑑𝑡2𝑑𝑡3𝑑𝑠1𝑑𝑠2𝑑𝑠3 =

= 𝑇−6
∫︁

[0,𝑇 ]
4

exp {−𝑖 (𝜙1 (𝑡1 − 𝑠1) + 𝜙2 (𝑡2 − 𝑠2))}×

×

⎛⎝ 𝑇∫︁
0

𝑇∫︁
0

𝑒−𝑖𝜙3(𝑡3−𝑠3)𝜀 (𝑡1, 𝑡2, 𝑡3) 𝜀 (𝑠1, 𝑠2, 𝑠3) 𝑑𝑡3𝑑𝑠3

⎞⎠ 𝑑𝑡1𝑑𝑡2𝑑𝑠1𝑑𝑠2.

(2)
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Перетворимо внутрiшнiй iнтеграл в (2):

𝑇∫︁
0

𝑇∫︁
0

𝑒−𝑖𝜙3(𝑡3−𝑠3)𝜀 (𝑡1, 𝑡2, 𝑡3) 𝜀 (𝑠1, 𝑠2, 𝑠3) 𝑑𝑡3𝑑𝑠3 =

=

𝑇∫︁
0

𝑇−𝑢3∫︁
0

𝑒−𝑖𝜙3𝑢3𝜀 (𝑡1, 𝑡2, 𝑣3 + 𝑢3) 𝜀 (𝑠1, 𝑠2, 𝑣3) 𝑑𝑣3𝑑𝑢3+

+

𝑇∫︁
0

𝑇−𝑢3∫︁
0

𝑒−𝑖𝜙3𝑢3𝜀 (𝑡1, 𝑡2, 𝑣3) 𝜀 (𝑠1, 𝑠2, 𝑣3 + 𝑢3) 𝑑𝑣3𝑑𝑢3.

(3)

Таким чином,

𝜂23 (𝜙;𝑇 ) = 𝑇−6
𝑇∫︁

0

𝑇−𝑢3∫︁
0

𝑒−𝑖𝜙3𝑢3

⎛⎝ 𝑇∫︁
0

𝑇∫︁
0

𝑒−𝑖𝜙1(𝑡1−𝑠1)

⎛⎝ 𝑇∫︁
0

𝑇∫︁
0

𝑒−𝑖𝜙2(𝑡2−𝑠2)×

×𝜀 (𝑡1, 𝑡2, 𝑣3 + 𝑢3) 𝜀 (𝑠1, 𝑠2, 𝑣3) 𝑑𝑡2𝑑𝑠2)𝑑𝑡1𝑑𝑠1)𝑑𝑣3𝑑𝑢3 +

+𝑇−6
𝑇∫︁

0

𝑇−𝑢3∫︁
0

𝑒𝑖𝜙3𝑢3

⎛⎝ 𝑇∫︁
0

𝑇∫︁
0

𝑒−𝑖𝜙1(𝑡1−𝑠1)

⎛⎝ 𝑇∫︁
0

𝑇∫︁
0

𝑒−𝑖𝜙2(𝑡2−𝑠2)×

×𝜀 (𝑡1, 𝑡2, 𝑣3) 𝜀 (𝑠1, 𝑠2, 𝑣3 + 𝑢3) 𝑑𝑡2𝑑𝑠2)𝑑𝑡1𝑑𝑠1)𝑑𝑣3𝑑𝑢3 = 𝐼13 + 𝐼23 .

(4)

Запишемо доданки 𝐼13 та 𝐼23 без множника 𝑇−6 та без двох початкових подвiй-
них iнтегралiв:

𝐼13 = . . .

𝑇∫︁
0

𝑇∫︁
0

𝑒−𝑖𝜙2(𝑡2−𝑠2)𝜀 (𝑡1, 𝑡2, 𝑣3 + 𝑢3) 𝜀 (𝑠1, 𝑠2, 𝑣3) 𝑑𝑡2𝑑𝑠2 . . . =

= . . .

𝑇∫︁
0

𝑇−𝑢2∫︁
0

𝑒−𝑖𝜙2𝑢2𝜀 (𝑡1, 𝑣2 + 𝑢2, 𝑣3 + 𝑢3) 𝜀 (𝑠1, 𝑣1, 𝑣3) 𝑑𝑣2𝑑𝑢3 . . .+

+ . . .

𝑇∫︁
0

𝑇−𝑢2∫︁
0

𝑒𝑖𝜙2𝑢2𝜀 (𝑡1, 𝑣2, 𝑣3 + 𝑢3) 𝜀 (𝑠1, 𝑣2 + 𝑢2, 𝑣3) 𝑑𝑣2𝑑𝑢3 . . . =

= 𝐼1132 + 𝐼1232 ;

(5)
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𝐼23 = . . .

𝑇∫︁
0

𝑇∫︁
0

𝑒−𝑖𝜙2(𝑡2−𝑠2)𝜀 (𝑡1, 𝑡2, 𝑣3) 𝜀 (𝑠1, 𝑠2, 𝑣3 + 𝑢3) 𝑑𝑡2𝑑𝑠2 . . . =

= . . .

𝑇∫︁
0

𝑇−𝑢2∫︁
0

𝑒−𝑖𝜙2𝑢2𝜀 (𝑡1, 𝑣2 + 𝑢2, 𝑣3) 𝜀 (𝑠1, 𝑣2, 𝑣3 + 𝑢3) 𝑑𝑣2𝑑𝑢2 . . .+

+ . . .

𝑇∫︁
0

𝑇−𝑢2∫︁
0

𝑒𝑖𝜙2𝑢2𝜀 (𝑡1, 𝑣2, 𝑣3) 𝜀 (𝑠1, 𝑣2 + 𝑢2, 𝑣3 + 𝑢3) 𝑑𝑣2𝑑𝑢2 . . . =

= 𝐼2132 + 𝐼2232 .

(6)

Продовжуючи застосовування теореми Фубiнi, отримуємо далi з (5) та (6)

𝐼1132 = . . .

𝑇∫︁
0

𝑇∫︁
0

𝑒−𝑖𝜙1(𝑡1−𝑠1)𝜀 (𝑡1, 𝑣2 + 𝑢2, 𝑣3 + 𝑢3) 𝜀 (𝑠1, 𝑣2, 𝑣3) 𝑑𝑡1𝑑𝑠1 . . . =

= . . .

𝑇∫︁
0

𝑇−𝑢1∫︁
0

𝑒−𝑖𝜙1𝑢1𝜀 (𝑣1 + 𝑢1, 𝑣2 + 𝑢2, 𝑣3 + 𝑢3) 𝜀 (𝑣1, 𝑣2, 𝑣3) 𝑑𝑣1𝑑𝑢1 . . .+

+ . . .

𝑇∫︁
0

𝑇−𝑢1∫︁
0

𝑒𝑖𝜙1𝑢1𝜀 (𝑣1, 𝑣2 + 𝑢2, 𝑣3 + 𝑢3) 𝜀 (𝑣1 + 𝑢1, 𝑣2, 𝑣3) 𝑑𝑣1𝑑𝑢1 . . . =

= 𝐼111321 + 𝐼112321 ;

(7)

𝐼1232 = . . .

𝑇∫︁
0

𝑇∫︁
0

𝑒−𝑖𝜙1(𝑡1−𝑠1)𝜀 (𝑡1, 𝑣2, 𝑣3 + 𝑢3) 𝜀 (𝑠1, 𝑣2 + 𝑢2, 𝑣3) 𝑑𝑡1𝑑𝑠1 . . . =

= . . .

𝑇∫︁
0

𝑇−𝑢1∫︁
0

𝑒−𝑖𝜙1𝑢1𝜀 (𝑢1 + 𝑣1, 𝑣2, 𝑣3 + 𝑢3) 𝜀 (𝑣1, 𝑣2 + 𝑢2, 𝑣3) 𝑑𝑣1𝑑𝑢1 . . .+

+ . . .

𝑇∫︁
0

𝑇−𝑢1∫︁
0

𝑒𝑖𝜙1𝑢1𝜀 (𝑣1, 𝑣2, 𝑣3 + 𝑢3) 𝜀 (𝑣1 + 𝑢1, 𝑣2 + 𝑢2, 𝑣3) 𝑑𝑣1𝑑𝑢1 . . . =

= 𝐼121321 + 𝐼122321 ;

(8)
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𝐼2132 = . . .

𝑇∫︁
0

𝑇∫︁
0

𝑒−𝑖𝜙1(𝑡1−𝑠1)𝜀 (𝑡1, 𝑣2 + 𝑢2, 𝑣3) 𝜀 (𝑠1, 𝑣2, 𝑣3 + 𝑢3) 𝑑𝑡1𝑑𝑠1 . . . =

= . . .

𝑇∫︁
0

𝑇−𝑢1∫︁
0

𝑒−𝑖𝜙1𝑢1𝜀 (𝑢1 + 𝑣1, 𝑣2 + 𝑢2, 𝑣3) 𝜀 (𝑣1, 𝑣2, 𝑣3 + 𝑢3) 𝑑𝑣1𝑑𝑢1 . . .+

+ . . .

𝑇∫︁
0

𝑇−𝑢1∫︁
0

𝑒𝑖𝜙1𝑢1𝜀 (𝑣1, 𝑣2 + 𝑢2, 𝑣3) 𝜀 (𝑣1 + 𝑢1, 𝑣2, 𝑣3 + 𝑢3) 𝑑𝑣1𝑑𝑢1 . . . =

= 𝐼211321 + 𝐼212321 ;

(9)

𝐼2232 = . . .

𝑇∫︁
0

𝑇∫︁
0

𝑒−𝑖𝜙1(𝑡1−𝑠1)𝜀 (𝑡1, 𝑣2, 𝑣3) 𝜀 (𝑠1, 𝑣2 + 𝑢2, 𝑣3 + 𝑢3) 𝑑𝑡1𝑑𝑠1 . . . =

= . . .

𝑇∫︁
0

𝑇−𝑢1∫︁
0

𝑒−𝑖𝜙1𝑢1𝜀 (𝑢1 + 𝑣1, 𝑣2, 𝑣3) 𝜀 (𝑣1, 𝑣2 + 𝑢2, 𝑣3 + 𝑢3) 𝑑𝑣1𝑑𝑢1 . . .+

+ . . .

𝑇∫︁
0

𝑇−𝑢1∫︁
0

𝑒𝑖𝜙1𝑢1𝜀 (𝑣1, 𝑣2, 𝑣3) 𝜀 (𝑣1 + 𝑢1, 𝑣2 + 𝑢2, 𝑣3 + 𝑢3) 𝑑𝑣1𝑑𝑢1 . . . =

= 𝐼221321 + 𝐼222321 .

(10)

В отриманих доданках (7)− (10) для зручностi змiнимо iндекси за правилом:

𝐼 𝑖𝑗𝑘321 → 𝐼𝑘𝑗𝑖123 → 𝐼𝑘𝑗𝑖, 𝑖, 𝑗, 𝑘 = 1, 2, (11)

причому 𝑖, або 𝑗, або 𝑘 дорiвнюють ”1”, коли на 1-му, або 2-му, або 3-му мiсцi пiд
знаком 𝜀 1-го множника стоїть сума 𝑣+𝑢 з вiдповiдними iндексами, i дорiвнюють
”2”, коли стоїть змiнна 𝑣 з вiдповiдними iндексами.

Тепер всi замiни змiнних, якi ми робили вище, можна записати у виглядi на-
ступної схеми.
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Рис. 1: Замiна змiнних.

Ми бачимо, що отримаємо 8 доданкiв пiсля вказаних замiн змiнних.
Позначимо 𝑑𝑣 = 𝑑𝑣1𝑑𝑣2𝑑𝑣3, 𝑑𝑢 = 𝑑𝑢1𝑑𝑢2𝑑𝑢3 та запишемо повнiстю iнтеграли,

що перенумеровано на Рис. 1.

1) 𝐼111 = 𝑇−6
∫︁

[0,𝑇 ]3

𝑇−𝑢1∫︁
0

𝑇−𝑢2∫︁
0

𝑇−𝑢3∫︁
0

exp {𝑖 (−𝜙1𝑢1 − 𝜙2𝑢2 − 𝜙3𝑢3)}×

×𝜀 (𝑣1 + 𝑢1, 𝑣2 + 𝑢2, 𝑣3 + 𝑢3) 𝜀 (𝑣1, 𝑣2, 𝑣3) 𝑑𝑣𝑑𝑢;

2) 𝐼211 = 𝑇−6
∫︁

[0,𝑇 ]3

𝑇−𝑢1∫︁
0

𝑇−𝑢2∫︁
0

𝑇−𝑢3∫︁
0

exp {𝑖 (𝜙1𝑢1 − 𝜙2𝑢2 − 𝜙3𝑢3)}×

×𝜀 (𝑣1, 𝑣2 + 𝑢2, 𝑣3 + 𝑢3) 𝜀 (𝑣1 + 𝑢1, 𝑣2, 𝑣3) 𝑑𝑣𝑑𝑢;

3) 𝐼121 = 𝑇−6
∫︁

[0,𝑇 ]3

𝑇−𝑢1∫︁
0

𝑇−𝑢2∫︁
0

𝑇−𝑢3∫︁
0

exp {𝑖 (−𝜙1𝑢1 + 𝜙2𝑢2 − 𝜙3𝑢3)}×

×𝜀 (𝑣1 + 𝑢1, 𝑣2, 𝑣3 + 𝑢3) 𝜀 (𝑣1, 𝑣2 + 𝑢2, 𝑣3) 𝑑𝑣𝑑𝑢;

4) 𝐼221 = 𝑇−6
∫︁

[0,𝑇 ]3

𝑇−𝑢1∫︁
0

𝑇−𝑢2∫︁
0

𝑇−𝑢3∫︁
0

exp {𝑖 (𝜙1𝑢1 + 𝜙2𝑢2 − 𝜙3𝑢3)}×
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×𝜀 (𝑣1, 𝑣2, 𝑣3 + 𝑢3) 𝜀 (𝑣1 + 𝑢1, 𝑣2 + 𝑢2, 𝑣3) 𝑑𝑣𝑑𝑢;

5) 𝐼112 = 𝑇−6
∫︁

[0,𝑇 ]3

𝑇−𝑢1∫︁
0

𝑇−𝑢2∫︁
0

𝑇−𝑢3∫︁
0

exp {𝑖 (−𝜙1𝑢1 − 𝜙2𝑢2 + 𝜙3𝑢3)}×

×𝜀 (𝑣1 + 𝑢1, 𝑣2 + 𝑢2, 𝑣3) 𝜀 (𝑣1, 𝑣2, 𝑣3 + 𝑢3) 𝑑𝑣𝑑𝑢;

6) 𝐼212 = 𝑇−6
∫︁

[0,𝑇 ]3

𝑇−𝑢1∫︁
0

𝑇−𝑢2∫︁
0

𝑇−𝑢3∫︁
0

exp {𝑖 (𝜙1𝑢1 − 𝜙2𝑢2 + 𝜙3𝑢3)}×

×𝜀 (𝑣1, 𝑣2 + 𝑢2, 𝑣3) 𝜀 (𝑣1 + 𝑢1, 𝑣2, 𝑣3 + 𝑢3) 𝑑𝑣𝑑𝑢;

7) 𝐼122 = 𝑇−6
∫︁

[0,𝑇 ]3

𝑇−𝑢1∫︁
0

𝑇−𝑢2∫︁
0

𝑇−𝑢3∫︁
0

exp {𝑖 (−𝜙1𝑢1 + 𝜙2𝑢2 + 𝜙3𝑢3)}×

×𝜀 (𝑣1 + 𝑢1, 𝑣2, 𝑣3) 𝜀 (𝑣1, 𝑣2 + 𝑢2, 𝑣3 + 𝑢3) 𝑑𝑣𝑑𝑢;

8) 𝐼222 = 𝑇−6
∫︁

[0,𝑇 ]3

𝑇−𝑢1∫︁
0

𝑇−𝑢2∫︁
0

𝑇−𝑢3∫︁
0

exp {𝑖 (𝜙1𝑢1 + 𝜙2𝑢2 + 𝜙3𝑢3)}×

×𝜀 (𝑣1, 𝑣2, 𝑣3) 𝜀 (𝑣1 + 𝑢1, 𝑣2 + 𝑢2, 𝑣3 + 𝑢3) 𝑑𝑣𝑑𝑢.

Звернемо увагу на те, що в iнтегралах 1) − 8) пiд знаком експонент стоять
"мiнуси" перед доданками там, де у 1-му множнику 𝜀 записано суми 𝑢 + 𝑣 з
вiдповiдними iндексами, а "плюси" стоять там, де у 1-му множнику 𝜀 знаходяться
змiннi 𝑣 з вiдповiдними iндексами (iндекс ”2” у позначеннях 𝐼 там, де стоїть "+"
в експонентi; iндекс ”1” там, де стоїть "−".

Зважаючи на формули 1)−8), запишемо цi знаки у виглядi наступної таблицi.

Рис. 2: Комплексно спряженi доданки.
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Легко побачити, що серед доданкiв 1) − 8) є 4 пари комплексно спряжених
чисел, як це показано на Рис. 2. Таким чином,

𝜂23 (𝜙;𝑇 ) = 2𝑇−6
∫︁

[0,𝑇 ]3

cos (𝜙1𝑢1 + 𝜙2𝑢2 + 𝜙3𝑢3)×

×
𝑇−𝑢1∫︁
0

𝑇−𝑢2∫︁
0

𝑇−𝑢3∫︁
0

𝜀 (𝑣1 + 𝑢1, 𝑣2 + 𝑢2, 𝑣3 + 𝑢3) 𝜀 (𝑣1, 𝑣2, 𝑣3) 𝑑𝑣𝑑𝑢+

+2𝑇−6
∫︁

[0,𝑇 ]3

cos (𝜙1𝑢1 − 𝜙2𝑢2 − 𝜙3𝑢3)×

×
𝑇−𝑢1∫︁
0

𝑇−𝑢2∫︁
0

𝑇−𝑢3∫︁
0

𝜀 (𝑣1, 𝑣2 + 𝑢2, 𝑣3 + 𝑢3) 𝜀 (𝑣1 + 𝑢1, 𝑣2, 𝑣3) 𝑑𝑣𝑑𝑢+

+2𝑇−6
∫︁

[0,𝑇 ]3

cos (−𝜙1𝑢1 + 𝜙2𝑢2 − 𝜙3𝑢3)×

×
𝑇−𝑢1∫︁
0

𝑇−𝑢2∫︁
0

𝑇−𝑢3∫︁
0

𝜀 (𝑣1 + 𝑢1, 𝑣2, 𝑣3 + 𝑢3) 𝜀 (𝑣1, 𝑣2 + 𝑢2, 𝑣3) 𝑑𝑣𝑑𝑢+

+2𝑇−6
∫︁

[0,𝑇 ]3

cos (𝜙1𝑢1 + 𝜙2𝑢2 − 𝜙3𝑢3)×

×
𝑇−𝑢1∫︁
0

𝑇−𝑢2∫︁
0

𝑇−𝑢3∫︁
0

𝜀 (𝑣1, 𝑣2, 𝑣3 + 𝑢3) 𝜀 (𝑣1 + 𝑢1, 𝑣2 + 𝑢2, 𝑣3) 𝑑𝑣𝑑𝑢.

(12)

Далi з (12) та теореми Фубiнi отримуємо

E𝜉23 (𝑇 ) = E sup
𝜙∈R3

𝜂23 (𝜙;𝑇 ) ⩽

⩽ 2𝑇−6
∫︁

[0,𝑇 ]3

E

⃒⃒⃒⃒
⃒⃒
𝑇−𝑢1∫︁
0

𝑇−𝑢2∫︁
0

𝑇−𝑢3∫︁
0

𝜀 (𝑣1 + 𝑢1, 𝑣2 + 𝑢2, 𝑣3 + 𝑢3) 𝜀 (𝑣1, 𝑣2, 𝑣3) 𝑑𝑣

⃒⃒⃒⃒
⃒⃒ 𝑑𝑢+

+2𝑇−6
∫︁

[0,𝑇 ]3

E

⃒⃒⃒⃒
⃒⃒
𝑇−𝑢1∫︁
0

𝑇−𝑢2∫︁
0

𝑇−𝑢3∫︁
0

𝜀 (𝑣1, 𝑣2 + 𝑢2, 𝑣3 + 𝑢3) 𝜀 (𝑣1 + 𝑢1, 𝑣2, 𝑣3) 𝑑𝑣

⃒⃒⃒⃒
⃒⃒ 𝑑𝑢+

(13)
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+2𝑇−6
∫︁

[0,𝑇 ]3

E

⃒⃒⃒⃒
⃒⃒
𝑇−𝑢1∫︁
0

𝑇−𝑢2∫︁
0

𝑇−𝑢3∫︁
0

𝜀 (𝑣1 + 𝑢1, 𝑣2, 𝑣3 + 𝑢3) 𝜀 (𝑣1, 𝑣2 + 𝑢2, 𝑣3) 𝑑𝑣

⃒⃒⃒⃒
⃒⃒ 𝑑𝑢+

+2𝑇−6
∫︁

[0,𝑇 ]3

E

⃒⃒⃒⃒
⃒⃒
𝑇−𝑢1∫︁
0

𝑇−𝑢2∫︁
0

𝑇−𝑢3∫︁
0

𝜀 (𝑣1, 𝑣2, 𝑣3 + 𝑢3) 𝜀 (𝑣1 + 𝑢1, 𝑣2 + 𝑢2, 𝑣3) 𝑑𝑣

⃒⃒⃒⃒
⃒⃒ 𝑑𝑢 ⩽

⩽ 2𝑇−6
∫︁

[0,𝑇 ]3

4∑︁
𝑗=1

Ψ
1/2 (𝑢) 𝑑𝑢.

Користуючись позначеннями 𝑤 = (𝑤1, 𝑤2, 𝑤3),∏︀
𝑇 (𝑢) = [0, 𝑇 − 𝑢1]× [0, 𝑇 − 𝑢2]× [0, 𝑇 − 𝑢3], запишемо

Ψ1 (𝑢) =

∫︁
∏︀2

𝑇 (𝑢)

E𝜀 (𝑣1 + 𝑢1, 𝑣2 + 𝑢2, 𝑣3 + 𝑢3) 𝜀 (𝑣1, 𝑣2, 𝑣3)×

𝜀 (𝑤1 + 𝑢1, 𝑤2 + 𝑢2, 𝑤3 + 𝑢3) 𝜀 (𝑤1, 𝑤2, 𝑤3) 𝑑𝑣𝑑𝑤;

(14)

Ψ2 (𝑢) =

∫︁
∏︀2

𝑇 (𝑢)

E𝜀 (𝑣1, 𝑣2 + 𝑢2, 𝑣3 + 𝑢3) 𝜀 (𝑣1 + 𝑢1, 𝑣2, 𝑣3)×

×𝜀 (𝑤1, 𝑤2 + 𝑢2, 𝑤3 + 𝑢3) 𝜀 (𝑤1 + 𝑢1, 𝑤2, 𝑤3) 𝑑𝑣𝑑𝑤;

(15)

Ψ3 (𝑢) =

∫︁
∏︀2

𝑇 (𝑢)

E𝜀 (𝑣1 + 𝑢1, 𝑣2, 𝑣3 + 𝑢3) 𝜀 (𝑣1, 𝑣2 + 𝑢2, 𝑣3)×

𝜀 (𝑤1 + 𝑢1, 𝑤2, 𝑤3 + 𝑢3) 𝜀 (𝑤1, 𝑤2 + 𝑢2, 𝑤3) 𝑑𝑣𝑑𝑤;

(16)

Ψ4 (𝑢) =

∫︁
∏︀2

𝑇 (𝑢)

E𝜀 (𝑣1, 𝑣2, 𝑣3 + 𝑢3) 𝜀 (𝑣1 + 𝑢1, 𝑣2 + 𝑢2, 𝑣3)×

𝜀 (𝑤1, 𝑤2, 𝑤3 + 𝑢3) 𝜀 (𝑤1 + 𝑢1, 𝑤2 + 𝑢2, 𝑤3) 𝑑𝑣𝑑𝑤.

(17)

Для оцiнювання iнтегралiв (14) − (17) застосуємо формулу Iсерлiса [2]. Якщо
(𝜀1, 𝜀2, 𝜀3, 𝜀4) – гауссiвський вектор з нульовим середнiм, то

E𝜀1𝜀2𝜀3𝜀4 = E𝜀1𝜀2E𝜀3𝜀4 + E𝜀1𝜀3E𝜀2𝜀4 + E𝜀1𝜀4E𝜀2𝜀3. (18)
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За формулою (18) отримуємо

Ψ1 (𝑢) = (𝑇 − 𝑢1)2 (𝑇 − 𝑢2)2 (𝑇 − 𝑢3)2𝐵2 (𝑢1, 𝑢2, 𝑢3)+

+

∫︁
∏︀2

𝑇 (𝑢)

𝐵2 (𝑣1 − 𝑤1, 𝑣2 − 𝑤2, 𝑣3 − 𝑤3) 𝑑𝑣𝑑𝑤+

+

∫︁
∏︀2

𝑇 (𝑢)

𝐵 (𝑣1 − 𝑤1 + 𝑢1, 𝑣2 − 𝑤2 + 𝑢2, 𝑣3 − 𝑤3 + 𝑢3)×

×𝐵 (𝑣1 − 𝑤1 − 𝑢1, 𝑣2 − 𝑤2 − 𝑢2, 𝑣3 − 𝑤3 − 𝑢3) 𝑑𝑣𝑑𝑤 =

= Ψ11 (𝑢) + Ψ12 (𝑢) + Ψ13 (𝑢) ;

(19)

Ψ2 (𝑢) = (𝑇 − 𝑢1)2 (𝑇 − 𝑢2)2 (𝑇 − 𝑢3)2𝐵2 (−𝑢1, 𝑢2, 𝑢3)+

+

∫︁
∏︀2

𝑇 (𝑢)

𝐵2 (𝑣1 − 𝑤1, 𝑣2 − 𝑤2, 𝑣3 − 𝑤3) 𝑑𝑣𝑑𝑤+

+

∫︁
∏︀2

𝑇 (𝑢)

𝐵 (𝑣1 − 𝑤1 − 𝑢1, 𝑣2 − 𝑤2 + 𝑢2, 𝑣3 − 𝑤3 + 𝑢3)×

×𝐵 (𝑣1 − 𝑤1 + 𝑢1, 𝑣2 − 𝑤2 − 𝑢2, 𝑣3 − 𝑤3 − 𝑢3) 𝑑𝑣𝑑𝑤 =

= Ψ21 (𝑢) + Ψ22 (𝑢) + Ψ23 (𝑢) ;

(20)

Ψ3 (𝑢) = (𝑇 − 𝑢1)2 (𝑇 − 𝑢2)2 (𝑇 − 𝑢3)2𝐵2 (𝑢1,−𝑢2, 𝑢3)+

+

∫︁
∏︀2

𝑇 (𝑢)

𝐵2 (𝑣1 − 𝑤1, 𝑣2 − 𝑤2, 𝑣3 − 𝑤3) 𝑑𝑣𝑑𝑤+

+

∫︁
∏︀2

𝑇 (𝑢)

𝐵 (𝑣1 − 𝑤1 + 𝑢1, 𝑣2 − 𝑤2 − 𝑢2, 𝑣3 − 𝑤3 + 𝑢3)×

×𝐵 (𝑣1 − 𝑤1 − 𝑢1, 𝑣2 − 𝑤2 + 𝑢2, 𝑣3 − 𝑤3 − 𝑢3) 𝑑𝑣𝑑𝑤 =

= Ψ31 (𝑢) + Ψ32 (𝑢) + Ψ33 (𝑢) ;

(21)

Ψ4 (𝑢) = (𝑇 − 𝑢1)2 (𝑇 − 𝑢2)2 (𝑇 − 𝑢3)2𝐵2 (𝑢1, 𝑢2,−𝑢3)+

+

∫︁
∏︀2

𝑇 (𝑢)

𝐵2 (𝑣1 − 𝑤1, 𝑣2 − 𝑤2, 𝑣3 − 𝑤3) 𝑑𝑣𝑑𝑤+

+

∫︁
∏︀2

𝑇 (𝑢)

𝐵 (𝑣1 − 𝑤1 + 𝑢1, 𝑣2 − 𝑤2 + 𝑢2, 𝑣3 − 𝑤3 − 𝑢3)×

×𝐵 (𝑣1 − 𝑤1 − 𝑢1, 𝑣2 − 𝑤2 − 𝑢2, 𝑣3 − 𝑤3 + 𝑢3) 𝑑𝑣𝑑𝑤 =

= Ψ41 (𝑢) + Ψ42 (𝑢) + Ψ43 (𝑢) .

(22)
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Iз формул (13) та (19)− (22) випливає, що

E𝜉23 (𝑇 ) ⩽ 2
4∑︁

𝑗=1

3∑︁
𝑘=1

𝑇=6

∫︁
[0,𝑇 ]3

Ψ
1/2
𝑗𝑘 (𝑢) 𝑑𝑢. (23)

Оцiнимо спочатку величину Ψ13 (𝑢). Позначимо

𝐵 (𝑣1 − 𝑤1 + 𝑢1, 𝑣2 − 𝑤2 + 𝑢2, 𝑣3 − 𝑤3 + 𝑢3)×

×𝐵 (𝑣1 − 𝑤1 − 𝑢1, 𝑣2 − 𝑤2 − 𝑢2, 𝑣3 − 𝑤3 − 𝑢3) =

= 𝑏(1)𝑢 (𝑣1 − 𝑤1, 𝑣2 − 𝑤2, 𝑣3 − 𝑤3) .

Застосовуючи вiдому в теорiї стацiонарних процесiв замiну змiнних, отримуємо

Ψ13 =

∫︁
∏︀2

𝑇 (𝑢)

𝑏(1)𝑢 (𝑣1 − 𝑤1, 𝑣2 − 𝑤2, 𝑣3 − 𝑤3) 𝑑𝑣𝑑𝑤 =

= (𝑇 − 𝑢1) (𝑇 − 𝑢2) (𝑇 − 𝑢3)
𝑇−𝑢1∫︁

−(𝑇−𝑢1)

𝑇−𝑢2∫︁
−(𝑇−𝑢2)

𝑇−𝑢3∫︁
−(𝑇−𝑢3)

(︂
1− |𝑡1|

𝑇 − 𝑢1

)︂
×

×
(︂
1− |𝑡2|

𝑇 − 𝑢2

)︂(︂
1− |𝑡3|

𝑇 − 𝑢3

)︂
𝑏(1)𝑢 (𝑡1, 𝑡2, 𝑡3) 𝑑𝑡1𝑑𝑡2𝑑𝑡3 =

= |𝑡𝑖 → 𝑇𝑡𝑖, 𝑖 = 1, 2, 3| =

= 𝑇 3 (𝑇 − 𝑢1) (𝑇 − 𝑢2) (𝑇 − 𝑢3)
1−𝑢1𝑇

−1∫︁
−(1−𝑢1𝑇−1)

1−𝑢2𝑇
−1∫︁

−(1−𝑢2𝑇−1)

1−𝑢3𝑇
−1∫︁

−(1−𝑢3𝑇−1)

×

×𝑏(1)𝑢 (𝑇𝑡1, 𝑇 𝑡2, 𝑇 𝑡3) 𝑑𝑡1𝑑𝑡2𝑑𝑡3 ⩽

⩽ 𝑇 3 (𝑇 − 𝑢1) (𝑇 − 𝑢2) (𝑇 − 𝑢3)
∫︁

[−1,1]3

𝑏(1)𝑢 (𝑇𝑡1, 𝑇 𝑡2, 𝑇 𝑡3) 𝑑𝑡;

(24)

2𝑇=6

∫︁
[0,𝑇 ]3

Ψ
1/2
13 (𝑢) 𝑑𝑢 = |𝑢𝑖 → 𝑇𝑢𝑖| = 2𝑇−3

∫︁
[0,1]

3

𝜓
1/2
13 (𝑇𝑢) 𝑑𝑢 ⩽

⩽ 2

∫︁
[0,1]

3

⎯⎸⎸⎷(1− 𝑢1) (1− 𝑢2) (1− 𝑢3)
∫︁

[−1,1]3

𝑏
(1)
𝑇𝑢 (𝑇𝑡1, 𝑇 𝑡2, 𝑇 𝑡3) 𝑑𝑡𝑑𝑢.

(25)
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Розглянемо iнтеграл пiд знаком кореня в формулi (25):∫︁
[−1,1]3

𝑏
(1)
𝑇𝑢 (𝑇𝑡) 𝑑𝑡 =

∫︁
[−1,1]3

̃︀𝐵 (𝑇 ‖𝑡+ 𝑢‖) ̃︀𝐵 (𝑇 ‖𝑡− 𝑢‖) 𝑑𝑡 =

=

∫︁
[−1,1]3

𝐿 (𝑇 ‖𝑡+ 𝑢‖)
𝑇 𝛼 ‖𝑡+ 𝑢‖𝛼

· 𝐿 (𝑇 ‖𝑡− 𝑢‖)
𝑇 𝛼 ‖𝑡− 𝑢‖𝛼

.

(26)

Запишемо, у свою чергу, iнтеграл (26) у виглядi суми 8 iнтегралiв, а саме:

1∫︁
−1

1∫︁
−1

1∫︁
−1

= 1]

1∫︁
0

1∫︁
0

1∫︁
0

+2]

0∫︁
−1

0∫︁
−1

0∫︁
−1

+3]

1∫︁
0

0∫︁
−1

0∫︁
−1

+4]

0∫︁
−1

1∫︁
0

0∫︁
−1

+

+5]

0∫︁
−1

0∫︁
−1

1∫︁
0

+6]

1∫︁
0

1∫︁
0

0∫︁
−1

+7]

1∫︁
0

0∫︁
−1

1∫︁
0

+8]

0∫︁
−1

1∫︁
0

1∫︁
0

.

(27)

Якщо функцiя 𝐿 монотонно не спадає, як це припускається в умовi A(i), то
чисельники в (26) завжди можна оцiнити наступним чином:

𝐿 (𝑇 ‖𝑡± 𝑢‖) ⩽ 𝐿
(︁
2
√
3𝑇
)︁
< (1 + 𝜀)𝐿 (𝑇 ) (28)

для будь-якого 𝜀 > 0 при 𝑇 > 𝑇 (𝜀).
Знаменники в (26) треба оцiнювати обережнiше. Розглянемо послiдовно всi

iнтеграли правої частини (27), у яких завжди 𝑢1, 𝑢2, 𝑢3 ⩾ 0.
1] 𝑡1, 𝑡2, 𝑡3 ⩾ 0. Тодĩ︀𝐵 (𝑇 ‖𝑡+ 𝑢‖) ̃︀𝐵 (𝑇 ‖𝑡− 𝑢‖) ⩽ ̃︀𝐵 (0) ̃︀𝐵 (𝑇 ‖𝑡+ 𝑢‖) ,

1

𝑇 𝛼
(︁
(𝑡1 + 𝑢1)

2 + (𝑡2 + 𝑢2)
2 + (𝑡3 + 𝑢3)

2
)︁𝛼

2

⩽
1

𝑇 𝛼 ‖𝑡‖𝛼
,

та iнтеграл

1] ⩽
̃︀𝐵 (0) (1 + 𝜀)𝐿 (𝑇 )

𝑇 𝛼

∫︁
𝑉 (
√
3)

‖𝑡‖−𝛼 𝑑𝑡 =

= ̃︀𝐵 (0) (1 + 𝜀) 𝐽 (3)𝐿 (𝑇 )𝑇−𝛼

√
3∫︁

0

𝜌2−𝛼𝑑𝜌 =

= ̃︀𝐵 (0) (1 + 𝜀) 𝐽 (3)

(︀√
3
)︀3−𝛼

3− 𝛼
𝐿 (𝑇 )

𝑇 𝛼
,

(29)
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де 𝐽 (𝑛) = 2 𝜋
𝑛
2

Γ(𝑛
2 )
, 𝑛 ⩾ 2 (див. [4], c. 403).

2] 𝑡1, 𝑡2, 𝑡3 ⩽ 0. Тодĩ︀𝐵 (𝑇 ‖𝑡+ 𝑢‖) ̃︀𝐵 (𝑇 ‖𝑡− 𝑢‖) ⩽ ̃︀𝐵 (0) ̃︀𝐵 (𝑇 ‖𝑡+ 𝑢‖) ,

i для iнтеграла (2) отримуємо оцiнку (29).
3] 𝑡1 ⩾ 0, 𝑡2 ⩽ 0, 𝑡3 ⩽ 0. Тодi за (26)

3] ⩽
̃︀𝐵 (0) (1 + 𝜀)𝐿 (𝑇 )

𝑇 𝛼

0∫︁
−1

0∫︁
−1

(︁
(𝑡2 − 𝑢2)2 + (𝑡3 − 𝑢3)2

)︁𝛼
2

𝑑𝑡2𝑑𝑡3 ⩽

⩽ ̃︀𝐵 (0) (1 + 𝜀)𝐿 (𝑇 )𝑇−𝛼
0∫︁

−1

0∫︁
−1

(︀
𝑡22 + 𝑡23

)︀−𝛼
2 𝑑𝑡2𝑑𝑡3 ⩽

⩽ ̃︀𝐵 (0) (1 + 𝜀)𝐿 (𝑇 )𝑇−𝛼
∫︁

𝑉 (
√
2)

‖𝑡‖−𝛼 𝑑𝑡 =

= ̃︀𝐵 (0) (1 + 𝜀)𝐿 (𝑇 )𝑇−𝛼
2𝜋
(︀√

2
)︀2−𝛼

2− 𝛼
.

(30)

4] 𝑡1 ⩽ 0, 𝑡2 ⩾ 0, 𝑡3 ⩽ 0. Iнтеграл оцiнюється як 3].
5] 𝑡1 ⩽ 0, 𝑡2 ⩽ 0, 𝑡3 ⩾ 0. Iнтеграл оцiнюється як 3].
6] 𝑡1 ⩾ 0, 𝑡2 ⩾ 0, 𝑡3 ⩽ 0. Iнтеграл оцiнюється як 3], але треба скористатися

нерiвнiстю ̃︀𝐵 (𝑇 ‖𝑡+ 𝑢‖) ̃︀𝐵 (𝑇 ‖𝑡− 𝑢‖) ⩽ ̃︀𝐵 (0) ̃︀𝐵 (𝑇 ‖𝑡+ 𝑢‖) .
7] 𝑡1 ⩾ 0, 𝑡2 ⩽ 0, 𝑡3 ⩾ 0. Iнтеграл оцiнюється аналогiчно 6].
8] 𝑡1 ⩽ 0, 𝑡2 ⩾ 0, 𝑡3 ⩾ 0. Iнтеграл оцiнюється аналогiчно 6].
Таким чином, iнтеграл пiд знаком кореня в (25) можна оцiнити величиною

порядку 𝑂
(︁ ̃︀𝐵 (𝑇 )

)︁
= 𝑂 (𝐿 (𝑇 )𝑇−𝛼), що не залежить вiд змiнних 𝑢 = (𝑢1, 𝑢2, 𝑢3),

як тiльки 𝛼 < 2 = 3−
[︀
3
2

]︀
. Це означає, що в правiй частинi (23)

2𝑇−6
∫︁

[0,𝑇 ]
3

Ψ
1
2
13 (𝑢) 𝑑𝑢 = 𝑂

(︁
𝐿

1
2 (𝑇 )𝑇−

𝛼
2

)︁
, 𝑇 →∞. (31)

Розглянемо величину Ψ23 (𝑢) аналогiчно Ψ13 (𝑢). Зараз iнтеграл, аналогiчний
iнтегралу (26), має вигляд∫︁

[−1,1]3

𝐵 (𝑇 (𝑡1 − 𝑢1) , 𝑇 (𝑡2 + 𝑢2) , 𝑇 (𝑡3 + 𝑢3))×

×𝐵 (𝑇 (𝑡1 + 𝑢1) , 𝑇 (𝑡2 − 𝑢2) , 𝑇 (𝑡3 − 𝑢3)) 𝑑𝑡.

(32)
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Маємо послiдовно

1]
1∫︀
0

1∫︀
0

1∫︀
0

. 2-й множник у (32) оцiнюємо 𝐵 (0), для 1-го отримуємо оцiнку (30),

завдяки тому, що 𝑡2, 𝑡3 ⩾ 0 (𝛼 < 2).

2]
0∫︀
−1

0∫︀
−1

0∫︀
−1
. 1-й множник оцiнюємо 𝐵 (0), для 2-го є вiрною оцiнка (20), так як

𝑡2, 𝑡3 ⩽ 0 (𝛼 < 2).

3]
1∫︀
0

0∫︀
−1

0∫︀
−1
. 1-й множник ⩽ 𝐵 (0), 2-ий оцiнюємо (29), тому що 𝑡1 ⩾ 0, 𝑡2 ⩽

0, 𝑡3 ⩽ 0 (𝛼 < 3).

4]
0∫︀
−1

1∫︀
0

0∫︀
−1
. 2-й множник ⩽ 𝐵 (0), 1-ий оцiнюємо (30), тому що 𝑡1 ⩽ 0, 𝑡2 ⩾

0 (𝛼 < 2).

5]
0∫︀
−1

0∫︀
−1

1∫︀
0

. 2-й множник ⩽ 𝐵 (0), 1-ий оцiнюємо (30), тому що 𝑡1 ⩽ 0, 𝑡3 ⩾

0 (𝛼 < 2).

6]
1∫︀
0

1∫︀
0

0∫︀
−1
. 1-й множник ⩽ 𝐵 (0), 2-ий оцiнюємо (30), тому що 𝑡1 ⩾ 0, 𝑡3 ⩽

0 (𝛼 < 2).

7]
1∫︀
0

0∫︀
−1

1∫︀
0

. 1-й множник ⩽ 𝐵 (0), 2-ий оцiнюємо (30), тому що 𝑡1 ⩾ 0, 𝑡2 ⩽

0 (𝛼 < 2).

8]
0∫︀
−1

1∫︀
0

1∫︀
0

. 2-й множник ⩽ 𝐵 (0), 1-ий оцiнюємо (29), тому що 𝑡1 ⩽ 0, 𝑡2 ⩾ 0, 𝑡3 ⩾

0 (𝛼 < 3).
Це означає, що для 𝛼 < 2 в (23)

2𝑇−6
∫︁

[0,𝑇 ]
3

Ψ
1
2
23 (𝑢) 𝑑𝑢 = 𝑂

(︁
𝐿

1
2 (𝑇 )𝑇−

𝛼
2

)︁
, 𝑇 →∞. (33)

Розглянемо величину Ψ33 (𝑢) та вiдповiдний аналогiчний iнтеграл∫︁
[−1,1]3

𝐵 (𝑇 (𝑡1 + 𝑢1) , 𝑇 (𝑡2 − 𝑢2) , 𝑇 (𝑡3 + 𝑢3))×

×𝐵 (𝑇 (𝑡1 − 𝑢1) , 𝑇 (𝑡2 + 𝑢2) , 𝑇 (𝑡3 − 𝑢3)) 𝑑𝑡.

(34)

Отримаємо для нього

1]
1∫︀
0

1∫︀
0

1∫︀
0

. 2-й множник оцiнюємо 𝐵 (0), 1-ий оцiнюємо (30), так як 𝑡1, 𝑡3 ⩾

0 (𝛼 < 2).

32



Mathematics in Modern Technical University, 2025 (1), 19–42

2]
0∫︀
−1

0∫︀
−1

0∫︀
−1
. 1-й множник ⩽ 𝐵 (0), для 2-го множника маємо (30), так як 𝑡1, 𝑡3 ⩽

0 (𝛼 < 2).

3]
1∫︀
0

0∫︀
−1

0∫︀
−1
. 2-й множник ⩽ 𝐵 (0), для 1-ого отримаємо (30), завдяки тому, що

𝑡1 ⩾ 0, 𝑡2 ⩽ 0 (𝛼 < 2).

4]
0∫︀
−1

1∫︀
0

0∫︀
−1
. 1-й множник ⩽ 𝐵 (0), для 2-го є вiрною оцiнка (29), завдяки нерiв-

ностям 𝑡1 ⩽ 0, 𝑡2 ⩾ 0, 𝑡3 ⩽ 3 (𝛼 < 3).

5]
0∫︀
−1

0∫︀
−1

1∫︀
0

. 2-й множник ⩽ 𝐵 (0), 1-ий оцiнюємо (30), тому що 𝑡2 ⩽ 0, 𝑡3 ⩾

0 (𝛼 < 2).

6]
1∫︀
0

1∫︀
0

0∫︀
−1
. 1-й множник ⩽ 𝐵 (0), 2-ий оцiнюємо (30), тому що 𝑡2 ⩾ 0, 𝑡3 ⩽

0 (𝛼 < 2).

7]
1∫︀
0

0∫︀
−1

1∫︀
0

. 2-й множник ⩽ 𝐵 (0), 1-ий множник оцiнюємо (29), тому що 𝑡1 ⩾

0, 𝑡2 ⩽ 0, 𝑡3 ⩾ 0 (𝛼 < 3).

8]
0∫︀
−1

1∫︀
0

1∫︀
0

. 1-й множник ⩽ 𝐵 (0), а в 2-му 𝑡1 ⩽ 0, 𝑡2 ⩾ 0 i ми оцiнюємо його (30)

(𝛼 < 2).
Таким чином, для 𝛼 < 2 в (23)

2𝑇−6
∫︁

[0,𝑇 ]
3

Ψ
1
2
33 (𝑢) 𝑑𝑢 = 𝑂

(︁
𝐿

1
2 (𝑇 )𝑇−

𝛼
2

)︁
, 𝑇 →∞. (35)

Нарештi, розглянемо величину Ψ43 (𝑢) та вiдповiдний їй iнтеграл∫︁
[−1,1]3

𝐵 (𝑇 (𝑡1 + 𝑢1) , 𝑇 (𝑡2 + 𝑢2) , 𝑇 (𝑡3 − 𝑢3))×

×𝐵 (𝑇 (𝑡1 − 𝑢1) , 𝑇 (𝑡2 − 𝑢2) , 𝑇 (𝑡3 + 𝑢3)) 𝑑𝑡.

(36)

Для цього iнтеграла отримуємо

1]
1∫︀
0

1∫︀
0

1∫︀
0

. 2-й множник у (36) обмежуємо 𝐵 (0), для 1-го множника маємо оцiн-

ку (30), тому що 𝑡1, 𝑡2 ⩾ 0 (𝛼 < 2).

2]
0∫︀
−1

0∫︀
−1

0∫︀
−1
. 1-й множник ⩽ 𝐵 (0), 𝑡1, 𝑡2 ⩽ 0 у 2-му множнику, i тому вiн оцiню-

ється (30) (𝛼 < 2).
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3]
1∫︀
0

0∫︀
−1

0∫︀
−1
. 2-й множник ⩽ 𝐵 (0), а в 1-му 𝑡1 ⩾ 0, 𝑡3 ⩽ 0, тобто є вiрною оцiнка

(30) (𝛼 < 2).

4]
0∫︀
−1

1∫︀
0

0∫︀
−1
. 2-й множник ⩽ 𝐵 (0), в 1-му 𝑡2 ⩾ 0, 𝑡3 ⩽ 0, i ми отримуємо оцiнку

(30) (𝛼 < 2).

5]
0∫︀
−1

0∫︀
−1

1∫︀
0

. 1-й множник ⩽ 𝐵 (0), у 2-му 𝑡1 ⩽ 0, 𝑡2 ⩽ 0, 𝑡3 ⩾ 0, i ми маємо оцiнку

(29) (𝛼 < 3).

6]
1∫︀
0

1∫︀
0

0∫︀
−1
. 2-й множник ⩽ 𝐵 (0), та 𝑡1 ⩾ 0, 𝑡2 ⩾ 0, 𝑡3 ⩽ 0 у 1-му множнику.

Таким чином, є вiрною оцiнка (29) (𝛼 < 3).

7]
1∫︀
0

0∫︀
−1

1∫︀
0

. 1-й множник ⩽ 𝐵 (0), у 2-му 𝑡2 ⩽ 0, 𝑡3 ⩾ 0 , i є вiрною оцiнка (30)

(𝛼 < 2).

8]
0∫︀
−1

1∫︀
0

1∫︀
0

. 1-й множник ⩽ 𝐵 (0), у 2-му 𝑡1 ⩽ 0, 𝑡3 ⩾ 0 , тобто виконується (30)

(𝛼 < 2).

Таким чином, для 𝛼 < 2 в (23)

2𝑇−6
∫︁

[0,𝑇 ]
3

Ψ
1
2
43 (𝑢) 𝑑𝑢 = 𝑂

(︁
𝐿

1
2 (𝑇 )𝑇−

𝛼
2

)︁
, 𝑇 →∞. (37)

Повертаючись до формул (13)− (23), з урахуванням спiввiдношень (31), (33),
(35) та (37), ми можемо стверджувати, що при 𝛼 < 2

2
4∑︁

𝑗=1

𝑇−6
∫︁

[0,𝑇 ]
3

Ψ
1
2

𝑗3 (𝑢) 𝑑𝑢 = 𝑂
(︁
𝐿

1
2 (𝑇 )𝑇−

𝛼
2

)︁
. (38)

З iншого боку, з (19)− (22) випливає, що

Ψ12 (𝑢) = Ψ22 (𝑢) = Ψ32 (𝑢) = Ψ42 (𝑢) =

=

∫︁
∏︀2

𝑇 (𝑢)

𝐵2 (𝑣1 − 𝑤1, 𝑣2 − 𝑤2, 𝑣3 − 𝑤3) 𝑑𝑣𝑑𝑤, (39)
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тобто в правiй частинi нерiвностi (23) треба оцiнити величину

8𝑇−6
∫︁

[0,𝑇 ]
3

Ψ
1
2
12 (𝑢) 𝑑𝑢 =

= 8𝑇−6
∫︁

[0,𝑇 ]
3

⎯⎸⎸⎷ ∫︁
∏︀2

𝑇 (𝑢)

𝐵2 (𝑣1 − 𝑤1, 𝑣2 − 𝑤2, 𝑣3 − 𝑤3) 𝑑𝑣𝑑𝑤𝑑𝑢.

(40)

Маємо ∫︁
∏︀2

𝑇 (𝑢)

𝐵2 (𝑣1 − 𝑤1, 𝑣2 − 𝑤2, 𝑣3 − 𝑤3) 𝑑𝑣𝑑𝑤 =

= (𝑇 − 𝑢1) (𝑇 − 𝑢2) (𝑇 − 𝑢3)
𝑇−𝑢1∫︁

−(𝑇−𝑢1)

𝑇−𝑢2∫︁
−(𝑇−𝑢2)

𝑇−𝑢3∫︁
−(𝑇−𝑢3)

(︂
1− |𝑡1|

𝑇 − 𝑢1

)︂
×

×
(︂
1− |𝑡2|

𝑇 − 𝑢2

)︂(︂
1− |𝑡3|

𝑇 − 𝑢3

)︂
𝐵2 (𝑡1, 𝑡2, 𝑡3) 𝑑𝑡1𝑑𝑡2𝑑𝑡3 =

= |𝑡𝑖 → 𝑇𝑡𝑖, 𝑖 = 1, 2, 3| = 𝑇 3 (𝑇 − 𝑢1) (𝑇 − 𝑢2) (𝑇 − 𝑢3)×

×
1−𝑢1𝑇

−1∫︁
−(1−𝑢1𝑇−1)

1−𝑢2𝑇
−1∫︁

−(1−𝑢2𝑇−1)

1−𝑢3𝑇
−1∫︁

−(1−𝑢3𝑇−1)

(︂
1− |𝑡1|

1− 𝑢1𝑇−1

)︂(︂
1− |𝑡2|

1− 𝑢2𝑇−1

)︂
×

×
(︂
1− |𝑡3|

1− 𝑢3𝑇−1

)︂
𝐵2 (𝑇𝑡1, 𝑇 𝑡2, 𝑇 𝑡3) 𝑑𝑡1𝑑𝑡2𝑑𝑡3 ⩽

⩽ 𝑇 3 (𝑇 − 𝑢1) (𝑇 − 𝑢2) (𝑇 − 𝑢3)
1∫︁

−1

1∫︁
−1

1∫︁
−1

𝐵2 (𝑇𝑡1, 𝑇 𝑡2, 𝑇 𝑡3) 𝑑𝑡1𝑑𝑡2𝑑𝑡3.
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Таким чином, для будь-якого 𝜀 > 0 та 𝑇 > 𝑇 (𝜀)

8𝑇−6
∫︁

[0,𝑇 ]
3

Ψ
1
2
12 (𝑢) 𝑑𝑢 = |𝑢𝑖 → 𝑇𝑢𝑖, 𝑖 = 1, 2, 3| ⩽

=

⎛⎝8𝑇−6
1∫︁

0

1∫︁
0

1∫︁
0

√︀
𝑇 3 (𝑇 − 𝑇𝑢1) (𝑇 − 𝑇𝑢2) (𝑇 − 𝑇𝑢3)𝑑𝑢

⎞⎠×
×

⎯⎸⎸⎸⎷ 1∫︁
−1

1∫︁
−1

1∫︁
−1

𝐵2 (𝑇𝑡1, 𝑇 𝑡2, 𝑇 𝑡3) 𝑑𝑡1𝑑𝑡2𝑑𝑡3 =

=
64

27

⎛⎝ 1∫︁
−1

1∫︁
−1

1∫︁
−1

𝐵2 (𝑇𝑡1, 𝑇 𝑡2, 𝑇 𝑡3) 𝑑𝑡1𝑑𝑡2𝑑𝑡3

⎞⎠
1
2

⩽

⩽
64

27
̃︀𝐵 (0)

⎛⎝ 1∫︁
−1

1∫︁
−1

1∫︁
−1

𝐿 (𝑇 ‖𝑡‖)𝑇−𝛼 ‖𝑡‖ 𝑑𝑡1𝑑𝑡2𝑑𝑡3

⎞⎠
1
2

⩽

⩽
64

27
̃︀𝐵 1

2 (0) (1 + 𝜀)𝐿
1
2 (𝑇 )𝑇−

𝛼
2

⎛⎜⎜⎝ ∫︁
𝑉 (
√
3)

‖𝑡‖−𝛼 𝑑𝑡1𝑑𝑡2𝑑𝑡3

⎞⎟⎟⎠
1
2

=

=
64

27
̃︀𝐵 1

2 (0) (1 + 𝜀) 𝐽
1
2 (3)

⎛⎜⎝
√
3∫︁

0

𝜌2−𝛼𝑑𝜌

⎞⎟⎠
1
2

· 𝐿
1
2 (𝑇 )𝑇−

𝛼
2 = 𝑂

(︁
𝐿

1
2 (𝑇 )𝑇−

𝛼
2

)︁
,

(41)

при 𝑇 →∞, як тiльки 𝛼 < 3.

Залишилось розглянути величини

Ψ11 (𝑢) = (𝑇 − 𝑢1)2 (𝑇 − 𝑢2)2 (𝑇 − 𝑢3)2𝐵2 (𝑢1, 𝑢2, 𝑢3) ,

Ψ21 (𝑢) = (𝑇 − 𝑢1)2 (𝑇 − 𝑢2)2 (𝑇 − 𝑢3)2𝐵2 (−𝑢1, 𝑢2, 𝑢3) ,
Ψ31 (𝑢) = (𝑇 − 𝑢1)2 (𝑇 − 𝑢2)2 (𝑇 − 𝑢3)2𝐵2 (𝑢1,−𝑢2, 𝑢3) ,
Ψ41 (𝑢) = (𝑇 − 𝑢1)2 (𝑇 − 𝑢2)2 (𝑇 − 𝑢3)2𝐵2 (𝑢1, 𝑢2,−𝑢3)

(42)
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та iнтеграли вiд них. Зокрема, маємо для 𝛼 < 3

2𝑇−6
∫︁

[0,𝑇 ]
3

Ψ
1
2
11 (𝑢) 𝑑𝑢 =

= 2𝑇−6
∫︁

[0,𝑇 ]
3

√︁
(𝑇 − 𝑢1)2 (𝑇 − 𝑢2)2 (𝑇 − 𝑢3)2 ̃︀𝐵2 (‖𝑢‖)𝑑𝑢 ⩽

⩽ 2𝑇−3
∫︁

[0,𝑇 ]
3

̃︀𝐵 (‖𝑢‖) 𝑑𝑢 = |𝑢→ 𝑇𝑢| =

= 2

1∫︁
0

1∫︁
0

1∫︁
0

̃︀𝐵 (𝑇 ‖𝑢‖) 𝑑𝑢 = 𝑂
(︀
𝐿 (𝑇 )𝑇−𝛼

)︀
, 𝑇 →∞,

(43)

як це було доведено вище. Лише треба зауважити, що iнтеграли вiд Ψ
1
2
21 (𝑢),

Ψ
1
2
31 (𝑢), Ψ

1
2
41 (𝑢) оцiнюються так само, як iнтеграл вiд Ψ

1
2
11 (𝑢) величиною (43).

Беручи до уваги нерiвнiсть (23), ми можемо стверджувати, що

E𝜉23 (𝑇 )→ 0, 𝑇 →∞. (44)

Як наслiдок, за нерiвнiстю Чебишева отримуємо

𝜉23 (𝑇 )→ 0, 𝑇 →∞. (45)

Враховуючи нерiвнiсть (23), за формулою (19) отримуємо

Ψ13 (𝑢) ⩽
∫︁

∏︀2
𝑇 (𝑢)

|𝐵 (𝑣1 − 𝑤1 + 𝑢1, 𝑣2 − 𝑤2 + 𝑢2, 𝑣3 − 𝑤3 + 𝑢3)×

×𝐵 (𝑣1 − 𝑤1 − 𝑢1, 𝑣2 − 𝑤2 − 𝑢2, 𝑣3 − 𝑤3 − 𝑢3) |𝑑𝑣𝑑𝑢 ⩽

⩽ (𝑇 − 𝑢1) (𝑇 − 𝑢2) (𝑇 − 𝑢3)
𝑇−𝑢1∫︁

−(𝑇−𝑢1)

𝑇−𝑢2∫︁
−(𝑇−𝑢2)

𝑇−𝑢3∫︁
−(𝑇−𝑢3)

|𝐵 (𝑡1 + 𝑢1, 𝑡2 + 𝑢2, 𝑡3 + 𝑢3)| ×

× |𝐵 (𝑡1 − 𝑢1, 𝑡2 − 𝑢2, 𝑡3 − 𝑢3)| 𝑑𝑡1𝑑𝑡2𝑑𝑡3 ⩽ (𝑇 − 𝑢1) (𝑇 − 𝑢2) (𝑇 − 𝑢3) ‖𝐵‖1𝐵 (0) ,

де ‖𝐵‖ =
∫︀
R3

|𝐵 (𝑡1, 𝑡2, 𝑡3)| 𝑑𝑡1𝑑𝑡2𝑑𝑡3 <∞;

2𝑇−6
∫︁

[0,𝑇 ]
3

Ψ
1
2
13 (𝑢) 𝑑𝑢 ⩽ 2𝐵

1
2 (0) ‖𝐵‖

1
2
1 𝑇
−6𝑇

3
2 ·3 = 𝑂

(︁
𝑇−

3
2

)︁
, 𝑇 →∞. (46)
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Користуючись формулами (20)− (22), так само отримуємо, що для 𝑗 = 2, 3, 4

2𝑇−6
∫︁

[0,𝑇 ]
3

Ψ
1
2

𝑗3 (𝑢) 𝑑𝑢 = 𝑂
(︁
𝑇−

3
2

)︁
, 𝑇 →∞. (47)

Зауважимо далi, що величини Ψ𝑗2 (𝑢) , 𝑗 = 1, 4, – збiгаються (див. (39)), i для
iнтегралiв вiд них отримуємо оцiнку аналогiчну (47):

2𝑇−6
∫︁

[0,𝑇 ]
3

Ψ
1
2
12 (𝑢) 𝑑𝑢 = 𝑂

(︁
𝑇−

3
2

)︁
, 𝑇 →∞. (48)

За формулою (19)

Ψ11 (𝑢) = (𝑇 − 𝑢1)2 (𝑇 − 𝑢2)2 (𝑇 − 𝑢3)2𝐵2 (𝑢1, 𝑢2, 𝑢3) ,

2𝑇−6
∫︁

[0,𝑇 ]
3

Ψ
1
2
11 (𝑢) 𝑑𝑢 = 2𝑇−6

∫︁
[0,𝑇 ]

3

(𝑇 − 𝑢1) (𝑇 − 𝑢2) (𝑇 − 𝑢3)×

× |𝐵 (𝑢1, 𝑢2, 𝑢3)| 𝑑𝑢1𝑑𝑢2𝑑𝑢3 ⩽ 2 ‖𝐵‖1 𝑇
−3.

(49)

Решта величин Ψ21 (𝑢) ,Ψ31 (𝑢) ,Ψ41 (𝑢) (див. (42)) оцiнюються аналогiчно.

Покажемо, що за умови A(i) зi спiввiдношення (48) випливає твердження (1)
теореми. Розглянемо послiдовнiсть 𝑇𝑛 = 𝑛𝛽, 𝑛 ⩾ 1, де число 𝛽 > 0 таке, що
1
2𝛼𝛽 > 1. Тодi

∞∑︁
𝑛=1

E𝜉23 (𝑇 )←∞. (50)

i 𝜉3 (𝑇𝑛)→ 0 м.н., при 𝑛→∞. Розглянемо також послiдовнiсть випадкових вели-
чин

𝜂𝑛 = sup
𝑇𝑛⩽𝑇⩽𝑇𝑛+1

|𝜉3 (𝑇 )− 𝜉3 (𝑇𝑛)| ⩽

⩽ sup
𝑇𝑛⩽𝑇⩽𝑇𝑛+1

sup
𝜙∈R3

⃒⃒⃒⃒
⃒⃒⃒𝑇−3 ∫︁

[0,𝑇 ]
3

𝑒−𝑖⟨𝜙,𝑡⟩𝜀 (𝑡) 𝑑𝑡− 𝑇−3𝑛

∫︁
[0,𝑇𝑛]

3

𝑒−𝑖⟨𝜙,𝑡⟩𝜀 (𝑡) 𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒ .
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Маємо послiдовно ⃒⃒⃒⃒
⃒⃒⃒𝑇−3 ∫︁

[0,𝑇 ]
3

𝑒−𝑖⟨𝜙,𝑡⟩𝜀 (𝑡) 𝑑𝑡− 𝑇−3𝑛

∫︁
[0,𝑇𝑛]

3

𝑒−𝑖⟨𝜙,𝑡⟩𝜀 (𝑡) 𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒ =

=

⃒⃒⃒⃒
⃒⃒⃒⃒𝑇−3 ∫︁

[0,𝑇 ]
3∪([0,𝑇 ]3∖[0,𝑇𝑛]

3)

𝑒−𝑖⟨𝜙,𝑡⟩𝜀 (𝑡) 𝑑𝑡− 𝑇−3𝑛

∫︁
[0,𝑇𝑛]

3

𝑒−𝑖⟨𝜙,𝑡⟩𝜀 (𝑡) 𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒⃒ ⩽

⩽
⃒⃒
𝑇−3 − 𝑇−3𝑛

⃒⃒ ⃒⃒⃒⃒⃒⃒⃒ ∫︁
[0,𝑇𝑛]

3

𝑒−𝑖⟨𝜙,𝑡⟩𝜀 (𝑡) 𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒+ 𝑇−3

∫︁
[0,𝑇 ]

3∖[0,𝑇𝑛]
3

|𝜀 (𝑡)| 𝑑𝑡 = 𝐽1 + 𝐽2;

(51)

𝐽1 ⩽

(︂
𝑇 3
𝑛+1

𝑇 3
𝑛

− 1

)︂
𝜉3 (𝑇𝑛)→ 0 м.н., 𝑛→∞. (52)

так як при 𝑛→∞

𝑇 3
𝑛+1

𝑇 3
𝑛

− 1 =
(𝑛+ 1)3𝛽

𝑛3𝛽
− 1 =

(︂
1 +

1

𝑛

)︂3𝛽

− 1 = 𝑂
(︀
𝑛−1
)︀
,

а 𝜉3 (𝑇𝑛)→ 0 м.н.
З iншого боку

𝐽2 ⩽ 𝑇−3𝑛

∫︁
[0,𝑇𝑛+1]

3∖[0,𝑇𝑛]
3

|𝜀 (𝑡)| 𝑑𝑡. (53)

Розглянемо далi формальне «множення» iнтегралiв, яке, насправдi, є застосу-
вання закону дистрибутивностi операцiй прямого множення та об’єднання мно-
жин: ∫︁ 𝑇𝑛+1

0

∫︁ 𝑇𝑛+1

0

∫︁ 𝑇𝑛+1

0

=

=

(︂∫︁ 𝑇𝑛

0

∫︁ 𝑇𝑛

0

+

∫︁ 𝑇𝑛+1

𝑇𝑛

∫︁ 𝑇𝑛

0

+

∫︁ 𝑇𝑛

0

∫︁ 𝑇𝑛+1

𝑇𝑛

+

∫︁ 𝑇𝑛+1

𝑇𝑛

∫︁ 𝑇𝑛+1

𝑇𝑛

)︂
×

×
(︂∫︁ 𝑇𝑛

0

+

∫︁ 𝑇𝑛+1

𝑇𝑛

)︂
=

∫︁ 𝑇𝑛

0

∫︁ 𝑇𝑛

0

∫︁ 𝑇𝑛

0

+

∫︁ 𝑇𝑛+1

𝑇𝑛

∫︁ 𝑇𝑛

0

∫︁ 𝑇𝑛

0

+

+

∫︁ 𝑇𝑛

0

∫︁ 𝑇𝑛+1

𝑇𝑛

∫︁ 𝑇𝑛

0

+

∫︁ 𝑇𝑛+1

𝑇𝑛

∫︁ 𝑇𝑛+1

𝑇𝑛

∫︁ 𝑇𝑛

0

+

∫︁ 𝑇𝑛

0

∫︁ 𝑇𝑛

0

∫︁ 𝑇𝑛+1

𝑇𝑛

+

+

∫︁ 𝑇𝑛+1

𝑇𝑛

∫︁ 𝑇𝑛

0

∫︁ 𝑇𝑛+1

𝑇𝑛

+

∫︁ 𝑇𝑛

0

∫︁ 𝑇𝑛+1

𝑇𝑛

∫︁ 𝑇𝑛+1

𝑇𝑛

+

∫︁ 𝑇𝑛+1

𝑇𝑛

∫︁ 𝑇𝑛+1

𝑇𝑛

∫︁ 𝑇𝑛+1

𝑇𝑛

.

(54)
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В останнiй сумi iнтегралiв нижнi межi iнтегрування утворюють повну сукупнiсть
бiнарних наборiв символiв 0 та 𝑇𝑛, i тому

𝑇−3𝑛

∫︁
[0,𝑇𝑛+1]

3∖[0,𝑇𝑛]
3
|𝜀 (𝑡)| 𝑑𝑡 = 𝑇−3𝑛

3∑︁
𝑘=1

𝐶𝑘
3∑︁

𝑖=1

∫︁
{𝑏𝑖𝑘(𝑛)}

|𝜀 (𝑡1, 𝑡2, 𝑡3)| 𝑑𝑡1𝑑𝑡2𝑑𝑡3, (55)

де
∫︀

{𝑏𝑖𝑘(𝑛)}
– 3-кратнi iнтеграли, в яких 𝑘 ⩾ 1 iнтегралiв

𝑇𝑛+1∫︀
𝑇𝑛

та 3− 𝑘 iнтегралiв
𝑇𝑛∫︀
0

,

а 𝑏𝑖𝑘 (𝑛) позначено вiдповiднi бiнарнi набори символiв 0 та 𝑇𝑛 довжини 3.
Покажемо, що кожний доданок в (55), який ми позначимо 𝐽𝑖𝑘 (𝑛), збiгається

до нуля м.н. при 𝑛→∞. Для цього розглянемо

E𝐽2
𝑖𝑘 (𝑛) = 𝑇−6𝑛

∫︁
{𝑏𝑖𝑘(𝑛)}

∫︁
{𝑏𝑖𝑘(𝑛)}

E
⃒⃒⃒
𝜀
(︁
𝑡
(1)
1 , 𝑡

(1)
2 , 𝑡

(1)
3

)︁
×

×𝜀
(︁
𝑡
(2)
1 , 𝑡

(2)
2 , 𝑡

(2)
3

)︁
|𝑑𝑡(1)1 𝑑𝑡

(1)
2 𝑑𝑡

(1)
3 𝑑𝑡

(2)
1 𝑑𝑡

(2)
2 𝑑𝑡

(2)
3 ⩽

⩽ 𝐵 (0)𝑇−6𝑛 (𝑇𝑛+1 − 𝑇𝑛)2𝑘 𝑇 6−2𝑘
𝑛 = 𝐵 (0)

(︂
𝑇𝑛+1

𝑇𝑛
− 1

)︂2𝑘

=

= 𝐵 (0)

(︃(︂
1 +

1

𝑛

)︂𝛽

− 1

)︃2𝑘

= 𝑂
(︀
𝑛−2𝑘

)︀
.

Оскiльки 𝑘 ⩾ 1, то всi наступнi ряди збiгаються:

∞∑︁
𝑛=1

E𝐽2
𝑖𝑘 (𝑛) <∞, 𝑖 = 1, 𝐶𝑘

3 , 𝑘 = 1, 3,

тобто
𝐽2 → 0 м.н., 𝑛→∞, (56)

i теорему 1. доведено, так як доведення останньої частини теореми у випадку
виконання умови A(ii) не вiдрiзняється вiд випадку виконання умови A(i).

3 Висновки

У роботi отримано рiвномiрний за частотами посилений ЗВЧ для фiнiтного
перетворення Фур’є однорiдного та iзотропного гауссiвського випадкового поля
на R3, коварiацiйна функцiя якого задовольняє умовам, котрi охоплюють випадки
слабкої та сильної консистентностi цього поля.
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Саме такий ЗВЧ є основним математичним фактом, на який спирається дове-
дення сильної консистентностi оцiнки найменших квадратiв невiдомих амплiтуд
та кутових частот у польовiй тригонометричнiй моделi регресiї з описаним вище
випадковим полем у якостi шуму.

Природним напрямком продовження цього дослiдження є ЗВЧ для локальних
перетворень Фур’є випадкових полiв на R𝑀 , 𝑀 ⩾ 3, з метою застосування цих
ЗВЧ у доведеннi сильної консистентностi оцiнки найменших квадратiв параметрiв
тригонометричних моделей 𝑀 -вимiрних текстурованих поверхонь.
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Abstract. In the paper a sample continuous Gaussian homogeneous and isotropic strongly
dependent random fields on R3 is a considered along with integral over the cube [0;𝑇 ]3 which can be
interpreted as a finite Fourier transform of this field. It is proved that uniform in frequencies norm
of such an averaged integral vanishes almost surely, as T tends to infinity. The result obtained is
of independent mathematical interest in the theory of random fields and can be used in statistics of
random fields and can be used in statistics of random fields and can be used in statistics of random
fields. In particular it can be used to prove the strong consistency of the least squares estimate of
unknown amplitudes and angular frequencies in trigonometric regression models where under the
signs of sines and cosines are linear forms of frequencies and the random noise is the field described
above. Similar models on the plane were studied in numerous signal processing publications thanks to
their application in texture analysis, in particular for symmetrical textured images processing. The
uniform strong law of large numbers obtained in the paper allows one to study three-dimensional
symmetric textured surfaces.
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