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Анотацiя

В порiвняннi з методами елементарної математики методи вищої математики
значно розширюють спектр можливостей при знаходженнi сум та добуткiв елементiв
деяких числових послiдовностей та сум числових або функцiональних рядiв. В
данiй статтi розглянуто застосування формул Муавра, Єйлера, бiнома Ньютона,
наведенi приклади. Розглядаючи пiдходящу функцiю на вiдрiзку [𝑎, 𝑏] i формуючи
для неї вiдповiдну iнтегральну суму Рiмана, iнтегруванням знаходимо її значення.
Використовуючи розклади Тейлора-Маклорена деяких вiдомих функцiй в 𝑅 або 𝐶,
iнтегруванням та диференцiюванням вiдповiдних степеневих та функцiональних
рядiв, отримуємо шуканi суми. Наведено приклад застосування формули Валiса.
Розкладаючи деякi функцiї в ряд Фур’є знаходимо при певних значеннях аргумента
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суми цiлої низки цiкавих числових рядiв. Приведено приклад застосування рiвностi
Ляпунова для обчислення суми тригонометричних рядiв. Розглянуто застосування
методiв операцiйного числення для знаходження сум числових, функцiональних та
тригонометричних рядiв, наведено приклад використання 𝛿-функцiї Дiрака та її
властивостей.

Ключовi слова: сума, добуток, методи, функцiї комплексної змiнної, ряди, ряди
Фур’є, диференцiювання, iнтегрування, операцiйне числення, 𝛿-функцiя Дiрака.
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1 Вступ
В Частинi 1. статтi розглянуто певнi методи елементарної математики для знахо-
дження сум та добуткiв елементiв числових та функцiональних послiдовностей.

Методи вищої математики значно розширюють спектр можливостей при розв’я-
заннi такого роду задач. Далi ми означимо вiдповiднi методи, пояснимо їх суть i, на
конкретних прикладах, покажемо застосування цих методiв з аналiзом отриманих
результатiв.

2 Застосування формули Муавра, формули
Ейлера та бiнома Ньютона

Метод полягає в застосуваннi вiдомих формул

(𝑐𝑜𝑠𝜙+ 𝑖𝑠𝑖𝑛𝜙)𝑛 = cos𝑛𝜙 + 𝑖sin𝑛𝜙 = 𝑒𝑖𝑛𝜙,

а також формули суми геометричної прогресiї та бiнома Ньютона.
Приклад 1. Знайти

𝑆𝑛 =
𝑛∑︁

𝑘=0

1

2𝑘
cos 𝑘𝜙 , 𝑆 = 𝑙𝑖𝑚

𝑛→∞
𝑆𝑛.

Розв’язання. Маємо

𝑆𝑛= 1+
1

2
cos𝜙 +

1

4
cos 2𝜙 +· · ·+ 1

2𝑛
cos𝑛𝜙.

Позначимо
𝑄𝑛=

1

2
sin𝜙 +

1

4
sin 2𝜙 +· · ·+ 1

2𝑛
sin𝑛𝜙.

Тодi

𝑆𝑛+𝑖𝑄𝑛= 1+
1

2
(cos𝜙 +𝑖 sin𝜙 )+

1

4
(cos 2𝜙 +isin2𝜙 )+· · ·+ 1

2𝑛
(cos𝑛𝜙+ sin𝑛𝜙 )=
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= 1 +
𝑧

2
+
(︁𝑧
2

)︁2
+ · · ·+

(︁𝑧
2

)︁𝑛
=

1−
(︀
𝑧
2

)︀𝑛+1

1− 𝑧
2

=
2
(︁
1− 𝑧𝑛+1

2𝑛+1

)︁
2− 𝑧

=

=

(︀
2𝑛+1 − 𝑧𝑛+1

)︀ (︀
2− 1

𝑧

)︀
2𝑛 (2− 𝑧 )

(︀
2− 1

𝑧

)︀ =

=
2𝑛+2 − 2𝑛+1 (cos𝜙− 𝑖 sin𝜙 )− 2 (cos(𝑛+ 1)𝜙 + 𝑖 sin(𝑛+ 1)𝜙 ) + cos𝑛𝜙+ 𝑖 sin𝑛𝜙

2𝑛 (4− 4cos𝜙 + 1)
,

де 𝑧 = cos𝜙 + isin𝜙 ; 1
𝑧 = cos𝜙 − 𝑖 sin𝜙 , тодi

𝑆𝑛=𝑅𝑒 (𝑆𝑛+𝑖𝑄𝑛)=
2𝑛+2 + cos𝑛𝜙−2 cos(𝑛+1)𝜙− 2𝑛+1 cos𝜙

2𝑛 (5− 4cos𝜙 )
=

=
1

5− 4cos𝜙

(︂
4− 2cos𝜙 − 1

2𝑛−1
cos(𝑛+ 1)𝜙 +

1

2𝑛
cos𝑛𝜙

)︂
,

далi

𝑆 = 𝑙𝑖𝑚
𝑛→∞

𝑆𝑛 =
2(2− cos𝜙)

5− 4cos𝜙
.

Аналогiчно знаходимо 𝑄𝑛 = 𝐼𝑚 (𝑆𝑛+𝑖𝑄𝑛).
Приклад 2. Знайти

𝑆𝑛 = 𝐶1
𝑛 −

1

3
𝐶3

𝑛 +
1

9
𝐶5

𝑛 −
1

27
𝐶7

𝑛 + · · ·

Розв’язання. Розглянемо 1 + 𝑖 1√
3
= 𝑧 =

⃒⃒⃒⃒
⃒ 𝑥 = 1 𝜌 =

√︁
1 + 1

3 =
2√
3

𝑦 = 1√
3

𝜙 = 𝜋
6

⃒⃒⃒⃒
⃒ =

= 2√
3

(︀
cos 𝜋

6 + 𝑖 sin 𝜋
6

)︀
, тодi

(︁
1 + 𝑖√

3

)︁𝑛
=
(︁

2√
3

)︁𝑛(︁√
3
2 + 𝑖12

)︁𝑛
. По формулi бiнома:(︂

1 + 𝑖
1√
3

)︂𝑛

= 1𝑛 + 𝐶1
𝑛

𝑖√
3
+ 𝐶2

𝑛

𝑖2

3
+ 𝐶3

𝑛

𝑖3

3
√
3
+ 𝐶4

𝑛

𝑖4

9
+ 𝐶5

𝑛

𝑖5

9
√
3
+ · · · =

= 1 +
1√
3
𝐶1

𝑛𝑖−
1

3
𝐶2

𝑛 −
1

3
𝐶3

𝑛

𝑖√
3
+

1

9
𝐶4

𝑛 +
1

9
𝐶5

𝑛

𝑖√
3
− · · · ≡

≡ 2𝑛√
3
𝑛

(︁
cos

𝑛𝜋

6
+ 𝑖 sin

𝑛𝜋

6

)︁
⇒

1√
3

(︂
𝐶1

𝑛 −
1

3
𝐶3

𝑛 +
1

9
𝐶5

𝑛 −
1

27
𝐶7

𝑛 + · · ·
)︂

=
1√
3
𝑆𝑛 =

2𝑛√
3
𝑛 sin

𝑛𝜋

6
,

або
𝑆𝑛 =

2𝑛sin 𝑛𝜋
6

3
𝑛−1
2

.
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Приклад 3. Обчислити

∞∑︁
𝑛=1

𝑞𝑛 sin𝑛𝑥 = 𝑄 (𝑞, 𝑥) , при |𝑞| < 1.

Розв’язання. Розглянемо ряд

∞∑︁
𝑛=1

𝑞𝑛𝑒𝑖𝑛𝑥 =
∞∑︁
𝑛=1

(︀
𝑞𝑒𝑖𝑥

)︀𝑛
=

𝑞𝑒𝑖𝑥

1− 𝑞𝑒𝑖𝑥
= 𝑇,

бо за умовою
⃒⃒
𝑞𝑒𝑖𝑥

⃒⃒
= |𝑞|

⃒⃒
𝑒𝑖𝑥
⃒⃒
= |𝑞| · 1 < 1, далi:

𝑇 =
∞∑︁
𝑛=1

𝑞𝑛 cos𝑛𝑥+ 𝑖
∞∑︁
𝑛=1

𝑞𝑛 sin𝑛𝑥 = 𝑆 (𝑞, 𝑥) + 𝑖𝑄 (𝑞, 𝑥) =

=
𝑞(cos 𝑥+ 𝑖 sin𝑥)

(1− 𝑞𝑐𝑜𝑠 𝑥)− 𝑖𝑞 sin 𝑥
=

𝑞(cos 𝑥+ 𝑖 sin𝑥) (1− 𝑞𝑐𝑜𝑠 𝑥+ 𝑖𝑞 sin 𝑥 )

(1− 𝑞𝑐𝑜𝑠 𝑥)2 + (𝑞 sin𝑥) 2 =

=
𝑞cos 𝑥− 𝑞2 + 𝑖𝑞 sin𝑥

1 + 𝑞2 − 2𝑞cos 𝑥
=

𝑞 cos𝑥 − 𝑞2

1 + 𝑞2 − 2𝑞cos 𝑥
+ 𝑖

𝑞 sin𝑥

1 + 𝑞2 − 2𝑞cos 𝑥
.

Таким чином
∞∑︁
𝑛=1

𝑞𝑛 sin𝑛𝑥 = 𝑄 (𝑞, 𝑥) =
𝑞 sin𝑥

1 + 𝑞2 − 2𝑞cos 𝑥
.

3 Застосування визначеного iнтеграла, зведення
до обчислення границь вiдповiдних
iнтегральних сум

Приклад 1. В Частинi 1. ми розглядали послiдовнiсть

𝜎𝑛 =
1

𝑛+ 1
+

1

𝑛+ 2
+ · · ·+ 1

2𝑛
,

та отримали

lim
𝑛→∞

𝜎𝑛 = lim
𝑛→∞

𝑛∑︁
𝑘=1

1

𝑛+ 𝑘
= ln2 .

Покажемо цей результат iнакше. Розглянемо функцiю 𝑦 = 1
𝑥 , 𝑥 ∈ [1; 2] . Розiб’ємо

[1; 2] на 𝑛 рiвних частин {𝑥0 = 1, 𝑥1 = 1 + 1
𝑛 = 𝑛+1

𝑛 , 𝑥2 = 1 + 2
𝑛 = 𝑛+2

𝑛 ,

· · · , 𝑥𝑛 = 1 + 𝑛
𝑛 = 2}, Δ𝑥𝑘 =

1
𝑛 .
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Тодi
𝑛∑︁

𝑘=1

𝑓(𝑥𝑘)Δ𝑥𝑘 =
𝑛∑︁

𝑘=1

𝑛

𝑛+ 𝑘
· 1
𝑛
=

𝑛∑︁
𝑘=1

1

𝑛+ 𝑘
→
∫︁ 2

1

𝑑𝑥

𝑥
= ln|𝑥||21 = ln2 .

Приклад 2.

𝑆𝑛 =
𝑛∑︁

𝑘=1

1√
𝑛2 + 𝑘2

, 𝑆 = 𝑙𝑖𝑚
𝑛→∞

𝑆𝑛.

Розв’язання. Розглядаючи функцiю 𝑓 (𝑥) = 1√
1+𝑥2

i точки подiлу [0; 1] {𝑥0 = 0,

𝑥1 =
1
𝑛 , 𝑥2 =

2
𝑛 , · · · , 𝑥𝑛 = 𝑛

𝑛 = 1}, маємо

𝑛∑︁
𝑘=1

1√︁
1 +

(︀
𝑘
𝑛

)︀2 · 1
𝑛
=

𝑛∑︁
𝑘=1

1√
𝑛2 + 𝑘2

→
∫︁ 1

0

𝑑𝑥√
1 + 𝑥2

=

= ln
⃒⃒⃒
𝑥+

√︀
1 + 𝑥2

⃒⃒⃒⃒⃒⃒1
0
= ln(1 +

√
2) .

4 Використання функцiональних та степеневих
рядiв, iнтегрування та диференцiювання їх,
формули розкладу Тейлора-Маклорена. Ряди в
комплекснiй площинi. Формула Валiса

Приклад 1. Обчислити суму ряду
∞∑︁
𝑛=0

𝑛2 + 1

2𝑛𝑛!
𝑥𝑛 = 𝑆 (𝑥) .

Розв’язання. Ряд збiгається рiвномiрно i абсолютно на R. Використаємо розклад
𝑒𝑥 =

∑︀∞
𝑛=0

𝑥𝑛

𝑛! , 𝑥 ∈ R. Маємо:

𝑆 (𝑥) =
∞∑︁
𝑛=1

𝑛

(𝑛− 1)!

(︁𝑥
2

)︁𝑛
+

∞∑︁
𝑛=0

1

𝑛!

(︁𝑥
2

)︁𝑛
=

∞∑︁
𝑘=0

𝑘 + 1

𝑘!

(︁𝑥
2

)︁𝑘+1

+𝑒
𝑥
2 =

=
(︁𝑥
2

)︁2 ∞∑︁
𝑚=0

1

𝑚!

(︁𝑥
2

)︁𝑚
+
𝑥

2

∞∑︁
𝑘=0

1

𝑘!

(︁𝑥
2

)︁𝑘
+ 𝑒

𝑥
2 = 𝑒

𝑥
2

(︂
1 +

𝑥

2
+

𝑥2

4

)︂
.

Приклад 2.

𝑆 (𝑥) =
∞∑︁
𝑛=0

(−1)𝑛(2𝑛
2
+ 1)

(2𝑛)!
𝑥2𝑛,
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використаємо розклад

sin 𝑥 =
∞∑︁
𝑛=0

(−1)𝑛
𝑥2𝑛+1

(2𝑛+ 1)!
, cos 𝑥 =

∞∑︁
𝑛=0

(−1)𝑛
𝑥2𝑛

(2𝑛)!
, 𝑥 ∈ R.

Розв’язання. 𝑆 (𝑥) = 2
∑︀∞

𝑛=0
(−1)

𝑛
𝑛
2

(2𝑛)! 𝑥2𝑛 +
∑︀∞

𝑛=0 (−1)𝑛 𝑥2𝑛

(2𝑛)! =

=
𝑥2

2

∞∑︁
𝑛=1

(−1)𝑛𝑥2𝑛−2

(2𝑛− 2)!
+
𝑥

2

∞∑︁
𝑛=1

(−1)𝑛𝑥2𝑛−1

(2𝑛− 1)!
+ cos 𝑥 =

=

(︂
1− 𝑥2

2

)︂
cos 𝑥− 𝑥

2
sin 𝑥, 𝑥 ∈ R.

Приклад 3. Диференцiюючи ряд знайти його суму:

𝑆 (𝑥) =
∞∑︁
𝑛=1

(−1)𝑛−1𝑥2𝑛

𝑛(2𝑛− 1)
.

Розв’язання. Ясно, що при 𝑥 ∈ [−1 + 𝜔, 1 − 𝜔], 𝜔 > 0 можна цей ряд двiчi
диференцiювати, маємо: |𝑥| < 1

𝑆 ′ (𝑥) =
∞∑︁
𝑛=1

(−1)𝑛−12𝑛𝑥2𝑛−1

𝑛(2𝑛− 1)
; 𝑆 ′′ (𝑥) = 2

∞∑︁
𝑛=1

(−1)𝑛−1(2𝑛− 1)𝑥2𝑛−2

2𝑛− 1
=

= 2
∞∑︁
𝑛=1

(−1)𝑛−1𝑥2𝑛−2 = 2
(︁
1− 𝑥2 + 𝑥4 − · · ·+ (−1)𝑛−1𝑥

2𝑛−2
+ · · ·

)︁
=

2

1 + 𝑥2
.

Тодi

𝑆 ′ (𝑥) =

∫︁ 𝑥

0

2𝑑𝑥

1 + 𝑥2
= 2 𝑎𝑟𝑐𝑡𝑔 𝑥|𝑥0 = 2 𝑎𝑟𝑐𝑡𝑔 𝑥, |𝑥| < 1, далi

𝑆 (𝑥) = 2

∫︁ 𝑥

0

𝑎𝑟𝑐𝑡𝑔 𝑥𝑑𝑥 =

⃒⃒⃒⃒
𝑎𝑟𝑐𝑡𝑔 𝑥 = 𝑢 𝑑𝑢 = 𝑑𝑥

1+𝑥2

𝑑𝑥 = 𝑑𝑣 𝑣 = 𝑥

⃒⃒⃒⃒
=

= 2𝑥 𝑎𝑟𝑐𝑡𝑔 𝑥|𝑥0 − 2

∫︁ 𝑥

0

𝑥𝑑𝑥

1 + 𝑥2
= 2𝑥 𝑎𝑟𝑐𝑡𝑔 𝑥− ln

(︀
1 + 𝑥2

)︀
,

|𝑥| < 1, при 𝑥 = ±1 ряд теж збiжний (застосовоючи граничний перехiд).
Приклад 4. Розглянемо ряди

∞∑︁
𝑛=0

cos𝑛𝑥

𝑛!
,

∞∑︁
𝑛=0

sin𝑛𝑥

𝑛!
,

знайдемо їх суми. Для цього знайдемо суму ряду
∑︀∞

𝑛=0
𝑒𝑖𝑛𝑥

𝑛! = 𝑆 (𝑥) .
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Ясно, що це
∞∑︁
𝑛=0

(︀
𝑒𝑖𝑥
)︀𝑛

𝑛!
= 𝑒𝑒

𝑖𝑥

= 𝑒cos𝑥+𝑖 sin𝑥 = 𝑒 cos𝑥 𝑒𝑖 sin𝑥 =

= 𝑒 cos𝑥 (cos(sin 𝑥)) +𝑖𝑒𝑐𝑜𝑠𝑥 (sin(sin 𝑥)) = 𝑅𝑒𝑆 (𝑥) + 𝑖𝐼𝑚𝑆 (𝑥) .

Але
∞∑︁
𝑛=0

𝑒𝑖𝑛𝑥

𝑛!
=

∞∑︁
𝑛=0

cos𝑛𝑥

𝑛!
+ 𝑖

∞∑︁
𝑛=0

sin𝑛𝑥

𝑛!
,

тому (𝑥 ∈ R)

∞∑︁
𝑛=0

cos𝑛𝑥

𝑛!
= 𝑒 cos𝑥 (cos(sin 𝑥)) ;

∞∑︁
𝑛=0

sin𝑛𝑥

𝑛!
= 𝑒𝑐𝑜𝑠𝑥 (sin(sin 𝑥)) .

Приклад 5. Розглянемо в C розклад

ln (1− 𝑧) = −
∞∑︁
𝑛=1

𝑧𝑛

𝑛
, при |𝑧| < 1.

Пiдставимо 𝑧 = 𝜌(cos𝜙+ 𝑖sin𝜙 ), маємо: |𝜌| < 1,

ln(1− 𝜌(cos𝜙+ 𝑖sin𝜙 )) =

= −
∞∑︁
𝑛=1

𝜌𝑛 cos𝑛𝜙

𝑛
− 𝑖

∞∑︁
𝑛=1

𝜌𝑛 sin𝑛𝜙

𝑛
,

або
1

2
ln(1− 2𝜌cos𝜙+ 𝜌2)− 𝑖 𝑎𝑟𝑐𝑡𝑔

𝜌sin𝜙

1− 𝜌cos𝜙
= −𝒫 − 𝑖𝒬 .

Тобто
∞∑︁
𝑛=1

𝜌𝑛 cos𝑛𝜙

𝑛
= −1

2
ln(1− 2𝜌cos𝜙+ 𝜌2),

∞∑︁
𝑛=1

𝜌𝑛 sin𝑛𝜙

𝑛
= 𝑎𝑟𝑐𝑡𝑔

𝜌sin𝜙

1− 𝜌cos𝜙
.

Якщо 0 < 𝜙 ⩽ 𝜋, то при 𝜌 = 1 обидва ряди збiжнi, а значить за теоремою Абеля
можна прейти до границi при 𝜌 → 1− 0 (справа), тодi маємо

∞∑︁
𝑛=1

cos𝑛𝜙

𝑛
= −ln

(︁
2sin

𝜙

2

)︁
,
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∞∑︁
𝑛=1

sin𝑛𝜙

𝑛
=𝑎𝑟𝑐𝑡𝑔

(︁
𝑐𝑡𝑔

𝜙

2

)︁
=

𝜋 − 𝜙

2
.

Приклад 6. Довести, що

𝑥𝑛 =
1 · 3 · 5 · · · · · (2𝑛− 1)

2 · 4 · 6 · · · · · 2𝑛
∼ 1√

𝜋𝑛
= 𝑦𝑛 при 𝑛 → ∞.

Запишемо формулу Валiса, яка випливає iз розкладу

sin 𝑥 = 𝑥
∞∏︁
𝑛=1

(︂
1− 𝑥2

𝑛2𝜋2

)︂
при 𝑥 =

𝜋

2
,

а саме
2

𝜋
=

∞∏︁
𝑛=1

(︂
1− 1

4𝑛2

)︂
=

∞∏︁
𝑛=1

(2𝑛− 1) (2𝑛+ 1)

(2𝑛)2
=

=
1 · 3
22

· 3 · 5
42

· 5 · 7
62

· · · · · (2𝑛− 1) (2𝑛+ 1)

(2𝑛)2
· . . .

Тобто

lim
𝑛→∞

𝑃𝑛 =

√︂
2

𝜋
, де 𝑃𝑛 =

1 · 3 · 5 · · · · · (2𝑛− 1)
√
2𝑛+ 1

2 · 4 · · · · · (2𝑛)
= 𝑥𝑛

√
2𝑛+ 1.

Тодi

lim
𝑛→∞

𝑥𝑛
𝑦𝑛

= lim
𝑛→∞

𝑃𝑛√
2𝑛+ 1

·
√
𝜋𝑛 = lim

𝑛→∞
𝑃𝑛 · lim

𝑛→∞

√︂
𝜋𝑛

2𝑛+ 1
=

√︂
2

𝜋
·
√︂

𝜋

2
= 1.

Тобто, дiйсно 𝑥𝑛∼ 𝑦𝑛, при 𝑛 → ∞.

5 Застосування розвинення в ряд Фур’є
Розглянемо 2𝑙 перiодичну функцiю 𝑓 (𝑥), що на 𝑥 ∈ [−𝑙; 𝑙] задовольняє всiм умовам
теореми Дирiхле. Тодi 𝑥 ∈ R ,

𝑓 * (𝑥) ∼=
𝑎0
2
+

∞∑︁
𝑛=1

(︁
𝑎𝑛cos

𝑛𝜋𝑥

𝑙
+ 𝑏𝑛sin

𝑛𝜋𝑥

𝑙

)︁
,

де

𝑎0 =
1

𝑙

∫︁ 𝑙

−𝑙

𝑓 (𝑥) 𝑑𝑥; 𝑎𝑛 =
1

𝑙

∫︁ 𝑙

−𝑙

𝑓 (𝑥) cos
𝑛𝜋𝑥

𝑙
𝑑𝑥; 𝑏𝑛 =

1

𝑙

∫︁ 𝑙

−𝑙

𝑓(𝑥)sin
𝑛𝜋𝑥

𝑙
𝑑𝑥.
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Використовуючи цей розклад при певних значеннях невiдомого 𝑥, отримуємо суми
деяких числових рядiв.

Приклад 1. Функцiю 𝑓 (𝑥) = 𝑠𝑔𝑛 𝑥 =

⎧⎨⎩ 1, 𝑥 > 0
0, 𝑥 = 0
−1, 𝑥 < 0

на 𝑥 ∈ (−𝜋; 𝜋), розкла-

сти в ряд Фур’є. Знайти суму ряду Лейбнiца

𝑆 =
∞∑︁
𝑛=1

(−1)𝑛−1

2𝑛− 1
.

Розв’язання. 𝑓 (𝑥)− непарна. Ряд Фур’є має вигляд

𝑓 * (𝑥) ∼=
4

𝜋

∞∑︁
𝑛=1

sin (2𝑛− 1) 𝑥

2𝑛− 1
,

тодi 𝑥 = 𝜋
2 точка неперевностi 𝑓(𝑥), тому, маємо

1 =
4

𝜋

∞∑︁
𝑛=1

sin (2𝑛− 1) 𝜋
2

2𝑛− 1
=

4

𝜋

∞∑︁
𝑛=1

(−1)𝑛−1

2𝑛− 1
⇒ 𝑆 =

𝜋

4
.

Приклад 2. Функцiю 𝑓 (𝑥) = 𝑥2 на 𝑥 ∈ (−𝜋; 𝜋) розкласти в ряд Фур’є. Знайти
суми

𝑆1 =
∞∑︁
𝑛=1

1

𝑛2
; 𝑆2 =

∞∑︁
𝑛=1

(−1)𝑛+1

𝑛2
; 𝑆3 =

∞∑︁
𝑛=1

1

(2𝑛− 1)2
.

Розв’язання. 𝑓 (𝑥)− парна, її ряд Фур’є:

𝑓 * (𝑥) ∼=
𝜋2

3
+ 4

∞∑︁
𝑛=1

(−1)𝑛

𝑛2
cos𝑛𝑥.

1) 𝑥 = 𝜋− точка неперервностi, тому маємо рiвнiсть

𝜋2 =
𝜋2

3
+ 4

∞∑︁
𝑛=1

(−1)𝑛cos𝑛𝜋

𝑛2
=

𝜋2

3
+ 4𝑆1 ⇒ 𝑆1 =

𝜋2

6
.

2) 𝑥 = 0− точка неперервностi, тодi

0 =
𝜋2

3
+ 4

∞∑︁
𝑛=1

(−1)𝑛

𝑛2
=

𝜋2

3
− 4𝑆2, звiдки 𝑆2 =

𝜋2

12
.

3) Iз рiвностi

𝑆1 + 𝑆2 = 2𝑆3 ⇒ 𝑆3 =
1

2

(︂
𝜋2

6
+

𝜋2

12

)︂
=

𝜋2

8
.
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Приклад 3. Розкласти 𝑓 (𝑥) = 𝑥(𝜋 − 𝑥) в ряд синусiв на 𝑥 ∈ (0; 𝜋). Знайти
суму

𝑆 =
∞∑︁
𝑛=1

(−1)𝑛−1

(2𝑛− 1)3
.

Розв’язання. Розклад має вид:

𝑓 * (𝑥) ∼=
8

𝜋

∞∑︁
𝑛=1

sin (2𝑛− 1) 𝑥

(2𝑛− 1)3
; 𝑥 ∈ R .

При 𝑥 = 𝜋
2 , маємо

𝜋2

4
=

8

𝜋

∞∑︁
𝑛=1

sin (2𝑛− 1) 𝜋
2

(2𝑛− 1)3
=

8

𝜋
𝑆,

звiдки

𝑆 =
𝜋2

4
· 𝜋
8
=

𝜋3

32
.

Приклад 4. Виходячи з рiвностi Ляпунова, знайти

𝑆1 =
∞∑︁
𝑛=1

sin2𝑛𝛼

𝑛2
та 𝑆2 =

∞∑︁
𝑛=1

cos2𝑛𝛼

𝑛2
, 0 ⩽ 𝛼 < 𝜋 .

Розв’язання. Для всякої iнтегрованої на [−𝑙; 𝑙] разом iз своїм квадратом функцiї
𝑓(𝑥) формально побудований тригонометричний ряд Фур’є задовольняє умовi
повноти (рiвнiсть Ляпунова).

𝑎0
2

2
+

∞∑︁
𝑛=1

(𝑎2𝑛 + 𝑏2𝑛 ) =
1

𝑙

∫︁ 𝑙

−𝑙

𝑓 2 (𝑥) 𝑑𝑥.

Розглянемо функцiю (парна, 𝑏𝑛 = 0) 𝑓 (𝑥) =

{︂
1, при |𝑥| < 𝛼
0, при 𝛼 < |𝑥| < 𝜋

.

Застосуємо до неї рiвнiсть Ляпунова. Маємо:

𝑎0=
2

𝜋

∫︁ 𝛼

0

1·𝑑𝑥=2𝛼

𝜋
; 𝑎𝑛=

2

𝜋

∫︁ 𝛼

0

1·cos𝑛𝑥 𝑑𝑥=
2

𝜋𝑛
sin𝑛𝛼 .

Тодi

𝑎0
2

2
+

∞∑︁
𝑛=1

(𝑎2𝑛 + 𝑏2𝑛 ) =
4𝛼2

2𝜋2
+

∞∑︁
𝑛=1

4

𝜋2𝑛2
sin2𝑛𝛼 =

2

𝜋

∫︁ 𝛼

0

1 · 𝑑𝑥 =
2𝛼

𝜋
.

Тобто
4

𝜋2
𝑆1 =

2𝛼

𝜋
− 2𝛼2

𝜋2
, або 𝑆1 =

𝜋𝛼− 𝛼2

2
.
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Але

𝑆1 + 𝑆2 =
∞∑︁
𝑛=1

sin2𝑛𝛼 + cos2𝑛𝛼

𝑛2
=

∞∑︁
𝑛=1

1

𝑛2
=

𝜋2

6
,

тому

𝑆2 =
𝜋2

6
− 𝑆1 =

𝜋2

6
− 𝜋𝛼− 𝛼2

2
=

𝜋2 − 3𝜋𝛼 + 𝛼2

6
.

6 Методи операцiйного числення. Застосування
iнтегрального перетворення Лапласа

Нехай 𝑓 (𝑡)− функцiя-оригiнал, а 𝐹 (𝑝) =
∫︀∞
0 𝑓 (𝑡) 𝑒−𝑝𝑡𝑑𝑡− її зображення по Ла-

пласу, маємо: 𝑓(𝑡) ≑ 𝐹 (𝑝).
Нехай 𝑆 =

∑︀∞
𝑛=𝑚 (±1)𝑛𝐹 (𝑛) , 𝑛 ∈ N, 𝑝 = 𝑠+ 𝑖𝜎 ∈ C , 𝑚 ∈ N , 𝑝 = 𝑛.

Тодi

𝑆 =
∞∑︁

𝑛=𝑚

(±1)𝑛
∫︁ ∞

0

𝑓 (𝑡) 𝑒−𝑛𝑡𝑑𝑡 =

∫︁ ∞

0

𝑓 (𝑡)
∞∑︁

𝑛=𝑚

(±1)𝑛𝑒−𝑛𝑡𝑑𝑡 =

= (±1)𝑚
∫︁ ∞

0

𝑓 (𝑡) 𝑒−𝑚𝑡

1∓ 𝑒−𝑡
𝑑𝑡, (1)

𝑆− сума нашого збiжного ряду.
Приклад 1. Знайти

𝑆 =
∞∑︁

𝑛=𝑚=1

(−1)𝑛−1

𝑛 (2𝑛+ 1) (2𝑛+ 2) (2𝑛+ 3)
.

Розв’язання. Знайдемо

𝑓 (𝑡) ≑ 𝐹 (𝑛) =
𝐴

𝑛
+

𝐵

2𝑛+ 1
+

𝐶

2𝑛+ 2
+

𝐷

2𝑛+ 3
.

Методом зручних значень: 𝐴 = 1
6 , 𝐵 = −1, 𝐶 = 1, 𝐷 = −1

3 .
Тодi

𝐹 (𝑛) =
1
6

𝑛
− 1

2𝑛+ 1
+

1

2𝑛+ 2
−

1
3

2𝑛+ 3
≑

≑
1

6
𝜂 (𝑡)− 1

2
𝑒−

𝑡
2 +

1

2
𝑒−𝑡 − 1

6
𝑒−

3𝑡
2 .

За формулою (1), маємо:

𝑆 =

∫︁ ∞

0

1− 3𝑒−
𝑡
2 + 3𝑒−𝑡 − 𝑒−

3𝑡
2

6(1 + 𝑒−𝑡)
𝑒−𝑡𝑑𝑡 =
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=

⃒⃒⃒⃒
⃒⃒ Замiна

𝑒−
𝑡
2 = 𝑥

𝑑𝑡 = −2𝑑𝑥
𝑥

⃒⃒⃒⃒
⃒⃒ = 1

3

∫︁ 1

0

−𝑥4 + 3𝑥3 − 3𝑥2 + 𝑥

1 + 𝑥2
𝑑𝑥 =

=
1

3

(︂
−𝑥3

3
+

3𝑥2

2
− 2𝑥− ln

(︀
𝑥2 + 1

)︀
+ 2𝑎𝑟𝑐𝑡𝑔 𝑥)

)︂⃒⃒⃒⃒1
0

=

=
1

18
(3𝜋 − 6ln2− 5) = 𝑆.

Приклад 2. Знайти

𝑆 =
∞∑︁

𝑛=𝑚=1

𝑎𝑟𝑐𝑡𝑔

√
3

𝑛2 + 𝑛+ 3
.

Розв’язання. 1 метод (операцiйний). Використаємо формулу:

𝑎𝑟𝑐𝑡𝑔
𝑘(𝑏− 𝑎)

𝑛2 + (𝑎+ 𝑏)𝑛+ 𝑎𝑏+ 𝑘2
= 𝑎𝑟𝑐𝑡𝑔

𝑘

𝑛+ 𝑎
− 𝑎𝑟𝑐𝑡𝑔

𝑘

𝑛+ 𝑏
,

що в нашому випадку буде: 𝑘 =
√
3, 𝑎 = 0, 𝑏 = 1, тобто

𝑎𝑟𝑐𝑡𝑔

√
3

𝑛2 + 𝑛+ 3
= 𝑎𝑟𝑐𝑡𝑔

√
3

𝑛
− 𝑎𝑟𝑐𝑡𝑔

√
3

𝑛+ 1
.

За таблицею зображень та використовуючи властивостi iнтегрального перетворення
Лапласа, маємо:

sin𝑚𝑡 ≑
𝑚

𝑚2+𝑝2
,

далi
sin𝑚𝑡

t
≑
∫︁ ∞

𝑝

𝑚𝑑𝑝

𝑚2+𝑝2
=

𝜋

2
− 𝑎𝑟𝑐𝑡𝑔

𝑝

𝑚
= 𝑎𝑟𝑐𝑡𝑔

𝑚

𝑝
,

i
𝑒−𝑎𝑡 sin𝑚𝑡

t
≑ 𝑎𝑟𝑐𝑡𝑔

𝑚

𝑝+ 𝑎
,

звiдки маємо (𝑝 = 𝑛):

𝑎𝑟𝑐𝑡𝑔

√
3

𝑛
−−𝑎𝑟𝑐𝑡𝑔

√
3

𝑛+ 1
≑

sin
√
3 𝑡

𝑡
− 𝑒−𝑡sin

√
3𝑡

𝑡
= 𝑓 (𝑡) .

Тепер за формулою (1), маємо:

𝑆 =

∫︁ ∞

0

𝑓 (𝑡)
𝑒−𝑡

1− 𝑒−𝑡
𝑑𝑡 =

∫︁ ∞

0

sin
√
3𝑡 (1− 𝑒−𝑡)𝑒−𝑡

𝑡(1− 𝑒−𝑡)
𝑑𝑡 =
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=

∫︁ ∞

0

𝑒−𝑡sin
√
3𝑡

𝑡
𝑑𝑡 =

⃒⃒⃒⃒∫︁ ∞

0

𝑒−𝑎𝑥 sin𝑚𝑥

𝑥
𝑑𝑥 = 𝑎𝑟𝑐𝑡𝑔

𝑚

𝑎

⃒⃒⃒⃒
=

= 𝑎𝑟𝑐𝑡𝑔
√
3 =

𝜋

3
= 𝑆.

2 метод (телескопiчний).

𝑆 = lim
𝑛→∞

𝑆𝑛 = lim
𝑛→∞

∞∑︁
𝑘=1

𝑎𝑘 =

⃒⃒⃒⃒
⃒𝑎𝑘 = 𝑎𝑟𝑐𝑡𝑔

√
3

𝑘
− 𝑎𝑟𝑐𝑡𝑔

√
3

𝑘 + 1

⃒⃒⃒⃒
⃒ =

= lim
𝑛→∞

(︃(︃
𝑎𝑟𝑐𝑡𝑔

√
3− 𝑎𝑟𝑐𝑡𝑔

√
3

2

)︃
+

(︃
𝑎𝑟𝑐𝑡𝑔

√
3

2
− 𝑎𝑟𝑐𝑡𝑔

√
3

3

)︃)︃
+ · · ·+

+

(︃
𝑎𝑟𝑐𝑡𝑔

√
3

𝑛
− 𝑎𝑟𝑐𝑡𝑔

√
3

𝑛+ 1

)︃)︃
= lim

𝑛→∞

(︃
𝑎𝑟𝑐𝑡𝑔

√
3− 𝑎𝑟𝑐𝑡𝑔

√
3

𝑛+ 1

)︃
=

𝜋

3
.

Далi розглянемо методи операцiйного числення для знаходження суми деяких три-
гонометричних рядiв. Нехай знову 1) 𝑓 (𝑡) ≑ 𝐹 (𝑝), 2) Φ (𝑡, 𝑥)− твiрна нескiнченої
функцiональної послiдовностi {𝜙𝑛 (𝑥)}, тобто
Φ (𝑡, 𝑥) =

∑︀∞
𝑛=0 𝜙𝑛 (𝑥)𝑡

𝑛, 3) ряд
∑︀∞

𝑛=0 𝐹 (𝑛)𝜙𝑛 (𝑥) = 𝑆 (𝑥)− збiгається на 𝑥 ∈ (𝑎; 𝑏),
тодi

𝑆 (𝑥) =
∞∑︁
𝑛=0

𝜙𝑛 (𝑥)

∫︁ ∞

0

𝑓(𝑡)𝑒−𝑛𝑡𝑑𝑡 =

∫︁ ∞

0

𝑓 (𝑡)
∞∑︁
𝑛=0

𝑒−𝑛𝑡𝜙𝑛 (𝑥) 𝑑𝑡 =

=

∫︁ ∞

0

𝑓 (𝑡) Φ
(︀
𝑒−𝑡, 𝑥

)︀
𝑑𝑡 = 𝑆 (𝑥) , (2)

причому:⎡⎢⎢⎢⎣
а) якщо 𝜙𝑛 (𝑥) = (±1)𝑛+1sin (𝑛𝑘 +𝑚) 𝑥 , то

Φ(k, m) (𝑡, 𝑥)
⃒⃒
𝑠𝑖𝑛

= 𝑡sin(𝑘+𝑚)𝑥 ∓𝑡2sin𝑚𝑥
1∓2𝑡 cos 𝑘𝑥 +𝑡2 =

∑︀∞
𝑛=1 (±1)𝑛+1sin (𝑛𝑘 +𝑚) 𝑥 · 𝑡𝑛;

б) якщо 𝜙𝑛 (𝑥) = (±1)𝑛+1𝑐𝑜𝑠 (𝑛𝑘 +𝑚)𝑥 , то
Φ(k, m) (𝑡, 𝑥)

⃒⃒
𝑐𝑜𝑠

= 𝑡cos(𝑘+𝑚)𝑥∓ 𝑡2cos𝑚𝑥
1∓2𝑡 cos 𝑘𝑥 +𝑡2 =

∑︀∞
𝑛=1 (±1)𝑛cos (𝑛𝑘 +𝑚)𝑥 · 𝑡𝑛.

(3)

Приклад 3. Знайти

𝑆 (𝑥) =
∞∑︁
𝑛=2

sin𝑛𝑥

𝑛2 − 1
; 𝑥 ∈ R .

Розв’язання. 1 метод (операцiйний). Маємо

𝐹 (𝑛) =
1

𝑛2 − 1
=

1

2

(︂
1

𝑛− 1
− 1

𝑛+ 1

)︂
.
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𝐹 (𝑛) ≑
1

2

(︀
𝑒𝑡 − 𝑒−𝑡

)︀
= sh𝑡 = 𝑓(𝑡) .

Далi Φ (𝑡, 𝑥) = Φ(1, 0) (𝑡, 𝑥)− 𝑡 sin𝑥 , бо 𝑘 = 1, 𝑚 = 0, 𝑛 = 2, 3, . . . (тому треба
вiдняти 𝑡 sin𝑥 при 𝑛 = 1, при 𝑛 = 0, sin (0𝑥) = 0 ). Тобто, за (3):

Φ (𝑡, 𝑥) =
𝑡sin 𝑥 − 0

1− 2𝑡 cos 𝑥 + 𝑡2
− 𝑡sin 𝑥 =

2𝑡2sin 𝑥 cos𝑥 − 𝑡3 sin 𝑥

1− 2𝑡 cos 𝑥 + 𝑡2
.

Тепер, за формулою (2), обчислимо

𝑆 (𝑥) =

∫︁ ?

0

sh𝑡
2𝑒−2𝑡sin 𝑥 cos𝑥 − 𝑒−3t sin 𝑥

1− 2𝑒−𝑡 cos 𝑥 + 𝑒−2t
𝑑𝑡 =

⃒⃒⃒⃒
⃒⃒ Замiна

𝑒−𝑡 = 𝑦

𝑑𝑡 = −𝑑𝑦
𝑦

⃒⃒⃒⃒
⃒⃒ =

=
1

2

∫︁ 1

0

(︀
1− 𝑦2

)︀
(sin 2𝑥 − ysin𝑥)

𝑦2 − 2𝑦 cos𝑥 + 1
𝑑𝑦 =

1

2

∫︁ 1

0

(︂
𝑦 sin𝑥− 2sin 𝑥 (𝑦 − cos 𝑥)

𝑦2 − 2𝑦 cos𝑥 + 1

)︂
𝑑𝑦 =

=
1

2
sin 𝑥

𝑦2

2

⃒⃒⃒⃒1
0

− 1

2
sin 𝑥

∫︁ 1

0

(2𝑦 − 2cos 𝑥)𝑑𝑦

𝑦2 − 2𝑦 cos𝑥 + 1
=

=
1

4
sin 𝑥− 1

2
sin 𝑥 ln( 𝑦2 − 2𝑦 cos𝑥 + 1)

⃒⃒⃒⃒1
0

=

=
1

4
sin 𝑥− 1

2
sin 𝑥 ln( 2(1− cos𝑥) ) = sin 𝑥

(︂
1

4
− ln

⃒⃒⃒
2sin

𝑥

2

⃒⃒⃒ )︂
.

2 метод (за допомогою рядiв аналiтичних функцiй комплексної змiнної).
Розглянемо ряди виду (A) : 1

2 𝑞0+
∑︀∞

𝑛=1 𝑞𝑛 cos𝑛𝑥 , (𝐵) :
∑︀∞

𝑛=1 𝑞𝑛 sin𝑛𝑥 , де 𝑞𝑛 > 0,
𝑞𝑛 → 0, 𝑞𝑛 ↓ монотонно. Тодi на довiльному замкнутому промiжку, що не мiстить
точок 2𝑘𝜋, 𝑘 ∈ Z , обидва ряди збiгаються рiвномiрно. Позначимо суму ряду
(𝐴) через 𝑓(𝑥), а ряду (𝐵) через 𝑔(𝑥). Так як 𝑓 (𝑥)− парна, а 𝑔 (𝑥)− непарна, то
можна розглядати лише 𝑥 ∈ [0, 𝜋] (обидвi функцiї перiодичнi з 𝑇0 = 2𝜋). Таким
чином, можна пов’язати функцiї 𝑓(𝑥) i 𝑔(𝑥) з їх розкладом у ряд Фур’є. Дiйсно,
якщо 𝑓(𝑥) та 𝑔 (𝑥)− абсолютно iнтегровнi, то ряди (𝐴) i (𝐵) являють собою
розвинення цих функцiй в ряд Фур’є. Одна iз достатнiх умов: якщо

∑︀∞
𝑛=1

𝑞𝑛
𝑛 −

збiжний, то ряди (𝐴) та (𝐵)− ряди Фур’є функцiй 𝑓(𝑥) та 𝑔 (𝑥). Природньо
виникає питання, а як знаючи ряди (𝐴) i (𝐵) знайти їх суми 𝑓(𝑥) та 𝑔 (𝑥), тобто
виразити їх через елементарнi функцiї, якщо це можливо. Ейлер запропонував
застосувати аналiтичнi функцiї комплексної змiнної таким чином. Нехай при
деякому наборi {𝑞𝑛} ряди (𝐴) та (𝐵) збiгаються до 𝑓(𝑥) та, вiдповiдно, 𝑔 (𝑥) в
промiжку [0, 2𝜋], за виключенням лише, можливо, окремих точок. Розглянемо
тепер в C степеневий ряд 1

2 𝑞0 +
∑︀∞

𝑛=1 𝑞𝑛𝑧
𝑛. На |𝑧| = 1, тобто при 𝑧 = 𝑒𝑖𝑥, цей ряд

збiгається, за виключенням окремих точок. Тому

1

2
𝑞0 +

∞∑︁
𝑛=1

𝑞𝑛𝑒
𝑖𝑛𝑥 =

1

2
𝑞0 +

∞∑︁
𝑛=1

𝑞𝑛(cos𝑛𝑥 +𝑖 sin𝑛𝑥 ) = 𝑓 (𝑥) + 𝑖𝑔 (𝑥) .
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Ясно, що при |𝑧| < 1 таким чином визначена певна функцiя 𝜙(𝑧). Використовуючи
вiдомi розклади елементарних функцiй комплексної змiнної в степеневий ряд,
часто вдається звести до них i функцiю 𝜙(𝑧), тодi, якщо 𝑧 = 𝑟𝑒𝑖𝑥 (𝑟 < 1), маємо

1

2
𝑞0 +

∞∑︁
𝑛=1

𝑞𝑛𝑟
𝑛𝑒𝑖𝑛𝑥 = 𝜙(𝑟𝑒𝑖𝑥).

За теоремою Абеля, як тiльки ряд з 𝑟 = 1− збiгається, то

lim
𝑟→1

𝜙(𝑟𝑒𝑖𝑥) = 𝑓 (𝑥) + 𝑖𝑔 (𝑥) ,

тобто суми рядiв (𝐴) та (𝐵) знайденi одночасно як дiйсна та уявна частини.
Повернiмося тепер до нашого ряду

∞∑︁
𝑛=2

sin𝑛𝑥

𝑛2 − 1
= 𝑆 (𝑥) = 𝑔 (𝑥) .

Тут

𝑞𝑛=
1

𝑛2 − 1
=
1

2

(︂
1

n− 1
− 1

𝑛+ 1

)︂
.

Знайдемо функцiю 𝜙(𝑧), маємо: 𝑛 ⩾ 2

𝜙 (𝑧) =
1

2

(︂
𝑧2

1
+

𝑧3

2
+

𝑧4

3
+ · · ·+ 𝑧𝑛

𝑛− 1
+ . . .

)︂
−

−1

2

(︂
𝑧2

3
+

𝑧3

4
+

𝑧4

5
+ · · ·+ 𝑧𝑛

𝑛+ 1
+ . . .

)︂
=

=

⃒⃒⃒⃒
⃒ ln (1− 𝑧) = −

(︁
𝑧 + 𝑧2

2 + 𝑧3

3 + 𝑧4

4 + · · ·+ 𝑧𝑛

𝑛 + . . .
)︁
, |𝑧| < 1

(вiдомий розклад)

⃒⃒⃒⃒
⃒ =

=
𝑧

2

(︂
𝑧 +

𝑧2

2
+

𝑧3

3
+

𝑧4

4
+ · · ·+ 𝑧𝑛

𝑛
+ . . .

)︂
−

− 1

2𝑧

(︂(︂
𝑧 +

𝑧2

2
+

𝑧3

3
+

𝑧4

4
+ · · ·+ 𝑧𝑛

𝑛
+ . . .

)︂
− 𝑧 − 𝑧2

2

)︂
=

= −𝑧

2
ln (1− 𝑧)+

1

2𝑧

(︂
ln(1− 𝑧) + 𝑧 +

𝑧2

2

)︂
=

1

2
+

𝑧

4
−
(︂
𝑧 − 1

𝑧

2

)︂
ln (1− 𝑧) .

Тепер

𝜙
(︀
𝑟𝑒𝑖𝑥

)︀
=

1

2
+

𝑟𝑒𝑖𝑥

4
− 𝑟

(︂
𝑒𝑖𝑥 − 𝑒−𝑖𝑥

2

)︂
ln
(︀
1− 𝑟𝑒𝑖𝑥

)︀
=
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=

⃒⃒⃒⃒
1− 𝑟𝑒𝑖𝑥 = 1− 𝑟(cos𝑥 +𝑖 sin 𝑥) = (1−𝑟 cos 𝑥 )−𝑖𝑟sin𝑥
ln𝑧 = ln |𝑧|+ 𝑖𝜙 = ln |𝑧|+ 𝑖𝑎𝑟𝑐𝑡𝑔 𝑦

𝑥 , 𝑧 = 𝑥+ 𝑖𝑦

⃒⃒⃒⃒
=

=
1

2
+

𝑟

4
(cos 𝑥 +𝑖 sin 𝑥 )− 𝑟𝑖sin𝑥 · ln(1− 𝑟cos𝑥− 𝑖𝑟sin𝑥).

𝑓 (𝑥) + 𝑖𝑔 (𝑥) = lim
𝑟→1

𝜙
(︀
𝑟𝑒𝑖𝑥

)︀
= 𝜙

(︀
𝑒𝑖𝑥
)︀
=

1

2
+

1

4
(cos 𝑥 +𝑖 sin 𝑥 )−

−𝑖 sin𝑥 · ln
(︁
2sin2

𝑥

2
− 𝑖2sin

𝑥

2
cos

𝑥

2

)︁
=

1

2
+

1

4
(cos 𝑥 +𝑖 sin 𝑥 )−

−𝑖 sin𝑥
(︁
ln
⃒⃒⃒
2sin

𝑥

2

⃒⃒⃒
− 𝑖𝑎𝑟𝑐𝑡𝑔

(︁
𝑐𝑡𝑔

𝑥

2

)︁ )︁
=
1

2
+

1

4
cos 𝑥 +

(︁𝑥
2
−𝜋

2

)︁
sin 𝑥 +

+𝑖

(︂
1

4
sin 𝑥 −sin𝑥 ln

⃒⃒⃒
2sin

𝑥

2

⃒⃒⃒ )︂
= 𝑓 (𝑥) + 𝑖𝑔 (𝑥) , 𝑥 ∈ (0; 2𝜋) .

Тобто маємо:

𝑓 (𝑥) =
∞∑︁
𝑛=2

cos𝑛𝑥

𝑛2 − 1
=

1

2
+

1

4
cos 𝑥 +

(︁𝑥
2
−𝜋

2

)︁
sin 𝑥 ,

𝑆 (𝑥) = 𝑔 (𝑥) =
∞∑︁
𝑛=2

sin𝑛𝑥

𝑛2 − 1
= sin𝑥

(︂
1

4
−ln

⃒⃒⃒
2sin

𝑥

2

⃒⃒⃒ )︂
.

Приклад 4. Знайти

𝑆 (𝑥) = 𝑓 (𝑥) =
∞∑︁
𝑛=1

(−1)𝑛−1cos(2𝑛− 1)𝑥

2𝑛− 1
.

Розв’язання. Вiдповiдний степеневий ряд в C :

∞∑︁
𝑛=1

(−1)𝑛−1 𝑧2𝑛−1

2𝑛− 1
,

але це є розкладом 𝑎𝑟𝑐𝑡𝑔 𝑧 = 1
2𝑖 ln

1+𝑖𝑧
1−𝑖𝑧 , |𝑧| ⩽ 1, крiм 𝑧 = ±𝑖.

Покладемо 𝑧 = 𝑒𝑖𝑥, 𝑥 ∈ [0; 𝜋], але 𝑥 ̸= 𝜋
2 , тодi

1 + 𝑖𝑧

1− 𝑖𝑧
=
⃒⃒
𝑧 = 𝑒𝑖𝑥

⃒⃒
=

1 + 𝑖 (cos 𝑥 +𝑖 sin𝑥 )

1− 𝑖 (cos 𝑥 +𝑖 sin𝑥 )
=

=
2𝑖cos 𝑥

2(1 + sin 𝑥)
= 𝑖

cos 𝑥

1 + sin𝑥
= 𝑖𝑡𝑔

(︁𝜋
4
− 𝑥

2

)︁
.⃒⃒⃒⃒

1 + 𝑖𝑧

1− 𝑖𝑧

⃒⃒⃒⃒
=
⃒⃒⃒
𝑡𝑔
(︁𝜋
4
− 𝑥

2

)︁⃒⃒⃒
,
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𝑎𝑟𝑔
1 + 𝑖𝑧

1− 𝑖𝑧
=

{︂
𝜋
2 ; 𝑥 < 𝜋

2
−𝜋

2 ; 𝑥 > 𝜋
2

; ln
1 + 𝑖𝑧

1− 𝑖𝑧
= ln

⃒⃒⃒
𝑡𝑔
(︁𝜋
4
− 𝑥

2

)︁⃒⃒⃒
± 𝑖

𝜋

2
.

Тобто
𝑎𝑟𝑐𝑡𝑔

(︀
𝑒𝑖𝑥
)︀
= ±𝜋

4
+ 𝑖

1

4
ln
(︁
𝑡𝑔2
(︁𝜋
4
+

𝑥

2

)︁)︁
,

або

𝑓 (𝑥) = 𝑆 (𝑥) =
∞∑︁
𝑛=1

(−1)𝑛−1cos(2𝑛− 1)𝑥

2𝑛− 1
=

{︂
𝜋
4 ; 𝑥 ∈ [0; 𝜋

2

)︀
−𝜋

4 ; 𝑥 ∈
(︀
𝜋
2 ; 𝜋]

,

𝑔 (𝑥) =
∞∑︁
𝑛=1

(−1)𝑛−1 sin(2𝑛− 1)𝑥

2𝑛− 1
=
1

4
ln
(︁
𝑡𝑔2
(︁𝜋
4
− 𝑥

2

)︁)︁
, 𝑥 ∈ [0; 𝜋] ∖

{︁𝜋
2

}︁
.

7 Застосування iнтегральної форми 𝛿-функцiї
Дiрака та її розкладу в ряд Фур’є

Приклад. Знайти

𝑆 (𝑥) =
∞∑︁
𝑛=1

sin𝑛𝑥

𝑛3
, а також

∞∑︁
т=1

(−1)𝑛−1

(2𝑛− 1)3
.

Розв’язання. Якщо 𝛿(𝑥) задана на 𝑥 ∈ (0; 𝜋), то справедливi формули:

1

2
+

∞∑︁
𝑛=1

cos𝑛𝑥 =
𝜋

2
𝛿 (𝑥) ;

∞∑︁
𝑛=1

cos (2𝑛− 1) 𝑥 =
𝜋

2
(𝛿 (𝑥)− 𝛿 (2𝑥)) ;

1

2
+

∞∑︁
𝑛=1

(−1)𝑛 cos𝑛𝑥 =
𝜋

2
(2𝛿(2𝑥)− 𝛿(𝑥)) ; 𝛿(𝑥) ≑ 1.

Розв’яжемо задачу знаходження 𝑆 (𝑥) =
∑︀∞

𝑛=1
sin𝑛𝑥
𝑛3 операцiйним методом. Cкла-

демо рiвняння для знаходження 𝑆 (𝑥), маємо:

𝑆 ′ (𝑥) =
∞∑︁
𝑛=1

cos𝑛𝑥

𝑛2
; 𝑆

′′
(𝑥) = −

∞∑︁
𝑛=1

sin𝑛𝑥

𝑛
;

𝑆
′′′
(𝑥) = −

∞∑︁
𝑛=1

cos𝑛𝑥 = −
(︂
𝜋

2
𝛿 (𝑥)− 1

2

)︂
=

1

2
− 𝜋

2
𝛿 (𝑥) .

Маємо:

𝑆 ′′′ (𝑥) =
1

2
− 𝜋

2
𝛿 (𝑥) , 𝑆 (0) = 𝑆 ′′ (0) = 0, 𝑆 ′ (0)− поки невiдомо.
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Далi:

𝑆 ′′′ (𝑥) ≑ 𝑝3𝑆 (𝑝)− 𝑝2𝑆 (0)− 𝑝𝑆 ′ (0)− 𝑆 ′′ (0) = 𝑝3𝑆 (𝑝)− 𝑝𝑆 ′ (0) .

1

2
≑

1

2𝑝
; 𝛿 (𝑥) ≑ 1,

рiвняння в просторi зображень:

𝑝3𝑆 (𝑝)− 𝑝𝑆 ′ (0) =
1

2𝑝
− 𝜋

2
· 1,

звiдки

𝑆 (𝑝) =
1

2𝑝4
− 𝜋

2𝑝3
+

𝑆 ′ (0)

𝑝2
.

Або
𝑆 (𝑝) ≑

1

2

𝑥3

3!
− 𝜋

2

𝑥2

2!
+ 𝑆 ′ (0) 𝑥 = 𝑆 (𝑥) ,

при 𝑥 = 𝜋, маємо

𝑆 (𝜋) =
∞∑︁
𝑛=1

sin𝑛 𝜋

𝑛3
= 0 =

1

12
𝜋3 − 𝜋

4
𝜋2 + 𝑆 ′ (0) 𝜋 =⇒ 𝑆 ′ (0) =

𝜋2

6
,

тому

𝑆 (𝑥) =
𝑥3 − 3𝜋𝑥2 + 2𝜋2𝑥

12
=

∞∑︁
𝑛=1

sin𝑛𝑥

𝑛3
.

Звiдки

∞∑︁
𝑛=1

(−1)𝑛−1

(2𝑛− 1)3
= 𝑆

(︁𝜋
2

)︁
=

1

12

(︂(︁𝜋
2

)︁3
− 3𝜋

(︁𝜋
2

)︁2
+ 2𝜋2𝜋

2

)︂
=

𝜋3

32
.

На завершення автори висловлюють подяку професору Клесову О.I. за кориснi
обговорення даної роботи.

References
V. O. Bilyi, O. G. Bilyi. (2017). Finding finite sums, products and limits of some

numerical sequences. Part 1. Application of methods of elementary mathematics
and basic concepts of the theory of limits of numerical sequences. Mathematics
in Modern Technical University, 2019 (2), 61–74.

Фiхтенгольц Г.М. (1969). Курс диференцiального та iнтегрального числення. Том
II, том III. М.: Наука, 800 c., 656 с.



Mathematics in Modern Technical University, 2021 (1), 19–37 37

Демидович Б.П. (1977). Збiрник задач i вправ з математичного аналiзу. М.:
Наука, 528 с.

Шелковнiков Ф.А., Такайшвiлi К.Г. (1968). Збiрник вправ з операцiйного числення.
М.: Вища школа, 255 с.

В.О. Бiлий, О. Г. Бiлий (2021). Знаходження скiнченних сум, добуткiв та границь деяких
числових послiдовностей. Частина 2. Застосування методiв вищої математики. Вiдшукання сум
рядiв. Mathematics in Modern Technical University, 2021 (1), 19–37.

Submitted: 2021-09-22
Accepted: 2021-09-30

V. O. Bilyi, O. G. Bilyi (2021). Finding finite sums, products, and limits of some numerical sequences.
Part 2. Application of methods of higher mathematics. Finding sums of series. Mathematics in
Modern Technical University, 2021 (1), 19–37.

Abstract. Compared to the methods of elementary mathematics, the methods of higher
mathematics significantly expand the range of possibilities when finding sums and products of
elements of some numerical sequences and sums of numerical or functional series. This article
examines the application of de Moivre’s, Euler’s formulas and Newton’s binomial, examples are given.
Considering a suitable function on the segment [𝑎, 𝑏] and forming the corresponding integral Riemann
sum for it, we find its value by integration. Using the Taylor & Maclaurin series of some known
functions in 𝑅 or 𝐶, integrating and differentiating the corresponding power and functional series, we
obtain the sums we are looking for. An example of the application of the Wallis formula is given.
Expanding some functions into a Fourier series, we find for certain values of the argument the sum of
many interesting numerical series. An example of using Lyapunov’s equality to calculate the sum of
trigonometric series is given. The use of operational calculus methods for finding sums of numerical,
functional and trigonometric series is considered, an example of the use of Dirac’s 𝛿-function and its
properties is given.
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