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Анотацiя

У статтi розглядаються основнi етапи розвитку теорiї асимптотичного iнтегрува-
ння крайових задач для лiнiйних сингулярно збурених диференцiально-алгебраїчних
систем. Необхiднiсть розробки конструктивних методiв наближеного iнтегрування
крайових задач для диференцiально-алгебраїчних систем обумовлена важливiстю
їх практичного застосування в теорiї нелiнiйних коливань, стiйкостi руху, теорiї
управлiння, радiотехнiцi, бiологiї.

Авторами пропонується огляд лiтературних джерел, в яких розглядаються
методи побудови асимптотичних розв’язкiв сингулярно збурених систем диферен-
цiальних рiвнянь iз виродженою матрицею при похiдних за умови стабiльностi
спектра граничної в’язки матриць. Вiдмiчається, що проблема побудови асимптоти-
чних розв’язкiв крайових задач для систем даного типу є мало вивченою, а тому
актуальною. Зокрема, мало дослiдженим залишається питання про умови iснування
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i єдиностi розв’язкiв цих задач та розробка методiв побудови їх асимптотики у
рiзних випадках, що пов’язанi iз поведiнкою спектра граничної в’язки матриць.

Ключовi слова: диференцiально-алгебраїчна система; крайова задача; сингу-
лярно збурена система.
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1 Вступ
У данiй статтi розглядаються основнi етапи розвитку теорiї асимптотичного iнте-
грування крайових задач

𝜀ℎ𝐵(𝑡, 𝜀)
𝑑𝑥

𝑑𝑡
= 𝐴(𝑡, 𝜀)𝑥+ 𝑓(𝑡, 𝜀), 𝑡 ∈ [0;𝑇 ], (1)

𝑀𝑥(0, 𝜀) +𝑁𝑥(0, 𝜀) = 𝑑(𝜀), (2)

де 𝑥(𝑡, 𝜀) – шуканий 𝑛-вимiрний вектор, 𝜀 ∈ (0; 𝜀0] – малий дiйсний параметр, ℎ
– натуральне число; 𝐴(𝑡, 𝜀), 𝐵(𝑡, 𝜀) – квадратнi матрицi 𝑛-го порядку з дiйсними
або комплекснозначними елементами; 𝑑(𝜀), 𝑓(𝑡, 𝜀) – вiдповiдно 𝑙- та 𝑛-вимiрний
вектор-стовпцi; 𝑀 , 𝑁 – сталi матрицi розмiрнiстю 𝑙×𝑛. При цьому передбачається,
що матриця 𝐵(𝑡, 𝜀) тотожно вироджена або вироджується з прямуванням малого
параметра до нуля.

На сьогоднi в математичнiй лiтературi єдиної назви системи (1) не мають.
Насамперед, це пов’язано з новизною об’єкту дослiджень та з тими доволi специфi-
чними властивостями розв’язкiв системи (1), якi б хотiли виокремити тi, або iншi
дослiдники. Системи (1) називають виродженими, диференцiально-алгебраїчними,
алгебро-диференцiальними, неявними, сингулярними, дескрипторними. В подаль-
шому ми такi системи називатимемо диференцiально-алгебраїчними системами
рiвнянь.

Необхiднiсть розробки конструктивних методiв наближеного iнтегрування кра-
йових задач для диференцiально-алгебраїчних систем обумовлена важливiстю
їх практичного застосування в теорiї нелiнiйних коливань, стiйкостi руху, теорiї
управлiння, радiотехнiцi, бiологiї тощо (Campbell, 1980, 1982).

2 Крайовi задачi для лiнiйних сингулярно збуре-
них диференцiально-алгебраїчних систем

Природно, що передумовою дослiджень властивостей розв’язкiв системи (1) були
дослiдження вiдповiдних властивостей розв’язкiв незбуреної системи

𝐵(𝑡)
𝑑𝑥

𝑑𝑡
= 𝐴(𝑡)𝑥+ 𝑓(𝑡), 𝑡 ∈ [0;𝑇 ], (3)
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де 𝑓(𝑡), 𝑥(𝑡) – вiдповiдно заданий i шуканий 𝑛-вимiрнi вектори; 𝐵(𝑡), 𝐴(𝑡) – ква-
дратнi матрицi 𝑛-го порядку, причому 𝑑𝑒𝑡𝐵(𝑡) ≡ 0, 𝑡 ∈ [0;𝑇 ].

Активне вивчення систем рiвнянь вигляду (3) розпочалося з кiнця 1970-x рокiв.
На сьогоднi для таких систем розроблено загальну теорiю i створено ефективнi
методи знаходження їх розв’язкiв. Значним внеском у розвиток загальної теорiї
диференцiально-алгебраїчних систем та чисельних методiв їх розв’язання стали
працi Ю. Є. Бояринцева, В. Ф. Чистякова, В. О. Данилова та О. О. Логiнова
(Boyarincev, 1980; Boyarincev, Danilov, Loginov, & Chistyakov, 1989). Зокрема, Боя-
ринцев Ю. Є. в роботах (Boyarincev, 1980; Boyarincev et al., 1989) здiйснив умовний
подiл диференцiально-алгебраїчних лiнiйних систем на регулярнi та сингулярнi i
сформулював спецiальнi крайовi задачi для них у виглядi iнтегралiв Стiльтьєса.
Згiдно з цим подiлом система (3) називається регулярною, якщо виконуються
умови:
а) iснує стале число 𝑐 таке, що матриця 𝐴(𝑡)− 𝑐𝐵(𝑡) має обернену на заданому
вiдрiзку;
б) матрицi 𝐵(𝑡)(𝐴(𝑡)− 𝑐𝐵(𝑡))−1, (𝐴(𝑡)− 𝑐𝐵(𝑡))−1𝐵(𝑡) мають нульовий чи одини-
чний iндекс або зводяться до канонiчного вигляду за допомогою сталої матрицi.
Система (3), яка не є регулярною, називається сингулярною.

За виконання умов а), б) систему (3) можна звести до вигляду

𝐶(𝑡)
𝑑𝑥

𝑑𝑡
= 𝑥+ 𝑔(𝑡), (4)

що суттєво спрощує подальше знаходження її розв’язкiв (Boyarincev, 1980).
У працях багатьох математикiв реалiзується iдея побудови неособливих перетво-

рень, за допомогою яких система (3) зводиться до системи iз сталими матрицями.
Зокрема, С. Кемпбелл в монографiї (Campbell, 1980) навiв необхiднi i достатнi
умови звiдностi системи (3) до системи iз сталими матрицями, а також показав, що
система (3) зводиться до вигляду (4), якщо ранги матриць 𝐴(𝑡) i 𝐵(𝑡) є сталими
на вiдрiзку [0;𝑇 ], а ранг (2𝑛× 𝑛)-матрицi [𝐴(𝑡), 𝐵(𝑡)] дорiвнює 𝑛.

У роботах С. Кемпбелла (Campbell, 1987; Campbell & Petzold, 1983),
(Campbell & Meyer, 1979; Campbell, 1980, 1982), Л. Петцольд (Campbell & Petzold,
1983; Gear & Petzold, 1983, 1984), I. Грiпентрога (Griepentrog & Marz, 1986), Р.
Мьорц (Marz, 1987, 1984, 1984), для вiдшукання розв’язкiв систем (3), (4) застосо-
вуються рiзнi методи зниження їх порядку.

Одним з фундаментальних понять теорiї диференцiально-алгебраїчних лiнiйних
систем є поняття центральної канонiчної форми, введене С. Кемпбеллом та Л.
Петцольд у 1983 роцi (Campbell & Petzold, 1983). Центральною канонiчною формою
системи (3) називається система вигляду(︂

𝐸𝑛−𝑠 0
0 𝑁𝑠

)︂
𝑑𝑥

𝑑𝑡
=

(︂
𝐾(𝑡) 0
0 𝐸𝑠

)︂
𝑥+ 𝑔(𝑡), (5)
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де 𝐸𝑠, 𝐸𝑛−𝑠 – одиничнi матрицi 𝑠-го та (𝑛− 𝑠)-го порядку вiдповiдно, 𝑁𝑠 – верх-
ньотрикутна матриця з нульовими квадратними блоками на дiагоналi.

У працях (Boyarincev et al., 1989; Campbell, 1987) було доведено, що за умови
аналiтичностi матриць 𝐴(𝑡), 𝐵(𝑡) звiднiсть системи (3) до центральної канонiчної
форми є необхiдною i достатньою умовою iснування в неї загального розв’язку
типу Кошi.

Бiльш загальнi умови звiдностi системи (3) до центральної канонiчної форми
тривалий час не вдавалось знайти. Одну з таких умов вказав В. Ф. Чистяков
(Boyarincev et al., 1989), назвавши її критерiєм “ранг-степiнь”: коли ранг матрицi
𝐵(𝑡) сталий для всiх 𝑡 ∈ [0;𝑇 ] i дорiвнює степеню многочлена 𝑑𝑒𝑡(𝐴(𝑡)− 𝜆𝐵(𝑡)).
Однак цей критерiй є дуже жорстким i застосовний лише до вузького класу
систем (3).

У 1993 роцi А. М. Самойленком i В. П. Яковцем було одержано найбiльш загаль-
нi вiдомi на сьогоднi достатнi умови звiдностi системи (3) до центральної канонiчної
форми (критерiй “ранг-степiнь” є їх частинним випадком)
(Samoilenko & Yakovets, 1993). Зауважимо, що доведення вiдповiдної теореми
має конструктивний характер, оскiльки дозволяє явно побудувати перетворюваль-
нi матрицi, а виконання умов теореми забезпечує регулярнiсть системи (3) та
наявнiсть у неї загального розв’язку типу Кошi, який являє собою суму лiнiйної
комбiнацiї 𝑛− 𝑠 лiнiйно незалежних розв’язкiв однорiдної системи та частинного
розв’язку неоднорiдної.

Використовуючи зазначену теорему, в (Samoilenko, Shkil’, & Yakovets’, 2000)
знайдено достатнi умови розв’язностi задачi Кошi для системи (3), введено по-
няття фундаментальної матрицi для даної системи та узагальнено теорiю Флоке-
Ляпунова на диференцiально-алгебраїчнi системи з перiодичними коефiцiєнтами.

Починаючи iз 80-х рокiв 20-го столiття дослiдники звертають увагу на сингу-
лярно збуренi диференцiально-алгебраїчнi системи (1)

𝜀ℎ𝐵(𝑡, 𝜀)
𝑑𝑥

𝑑𝑡
= 𝐴(𝑡, 𝜀)𝑥+ 𝑓(𝑡, 𝜀), 𝑡 ∈ [0;𝑇 ],

де, як вже зазначалось ранiше, 𝜀 – малий дiйсний параметр.
Вiдомо, що одними iз найбiльш ефективних методiв наближеного iнтегрування

диференцiальних рiвнянь, що залежать вiд малого параметра, є асимптотичнi
методи, якi грунтуються на iдеї побудови шуканих розв’язкiв у виглядi розвинень
за степенями параметра. Хоча при цьому формальнi ряди, за допомогою яких
представляються розв’язки, є, як правило, розбiжними, але вирази, одержанi
шляхом обривання цих рядiв на 𝑚-му членi, у багатьох випадках асимптотично
прямують до вiдповiдних точних розв’язкiв при 𝜀 → 0.

Розвиваючи iдеї побудови асимптотичного зображення розв’язкiв диференцi-
альних рiвнянь, що закладенi ще на початку ХIХ столiття у працях Ж. Штурма,
Ж. Лiувiлля та А. Пуанкаре, на сьогоднi розроблено значну кiлькiсть методiв
асимптотичного iнтегрування рiзних типiв диференцiальних рiвнянь.
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Серед найефективнiших слiд назвати метод Ляпунова-Пуанкаре, асимптотичнi
методи нелiнiйної механiки М. М. Крилова, М. М. Боголюбова, Ю. О. Митрополь-
ського, А. М. Самойленка (Bogoljubov & Mitropol’skij, 1974; Mitropol’skij, 1971),
(Bogoljubov, Mitropol’skij, & Samojlenko, 1976), методи примежевих функцiй А.
М. Тихонова, А. Б. Васильєвої, В. Ф. Бутузова (Vasil’eva & Butuzov, 1973, 1978),
методи асимптотичного iнтегрування лiнiйних систем диференцiальних рiвнянь
В. Вазова (Wasow, 1966), Е. Коддiнгтона та Н. Левiнсона (Coddington & Levinson,
1955), С. Ф. Фещенка та М. I. Шкiля (Feshchenko, Shkil’, & Nikolenko, 1967) та iн.

Питання побудови асимптотичного зображення розв’язкiв лiнiйних диферен-
цiальних рiвнянь, якi мiстять параметр, розглядалось вже на початку XX столiття
у працях Л. Шлезiнгера (Schlesinger, 1910) та Дж. Бiркгофа (Birkhoff, 1908). Згiдно
iз класичною теорiєю Шлезiнгера-Бiркгофа однорiдна система

𝜀ℎ
𝑑𝑥

𝑑𝑡
= 𝐴(𝑡, 𝜀)𝑥, (6)

у випадку простих коренiв вiдповiдного характеристичного рiвняння 𝑑𝑒𝑡(𝐴(𝑡, 0)−
𝜆𝐸) = 0 має фундаментальну систему розв’язкiв вигляду

𝑥𝑖(𝑡, 𝜀) = 𝑢𝑖(𝑡, 𝜀) exp

⎛⎝𝜀−ℎ

𝑡∫︁
0

(𝜆𝑖(𝑡) + 𝜆𝑖(𝑡, 𝜀))𝑑𝑡

⎞⎠ , 𝑖 = 1, 𝑛, (7)

де 𝜆𝑖(𝑡) – власне значення матрицi 𝐴(𝑡, 0), а 𝑛-вимiрний вектор 𝑢𝑖(𝑡, 𝜀) i скалярна
функцiя 𝜆𝑖(𝑡, 𝜀) зображаються у виглядi формальних розвинень за степенями
параметра 𝜀.

Проте питання про асимптотичне зображення розв’язкiв системи (6) у випадку
кратних коренiв характеристичного рiвняння виявилось складним i залишалося
невирiшеним аж до 50-х рокiв XX столiття. Випадок кратних коренiв характери-
стичного рiвняння для системи вигляду (6) був всебiчно вивчений М. I. Шкiлем
(Feshchenko et al., 1967) в 60-х роках XX столiття. Йому вдалося показати, що
лiнiйно незалежнi розв’язки однорiдної системи

𝑑𝑥

𝑑𝑡
= 𝐴(𝜏, 𝜀) (8)

з повiльно змiнними коефiцiєнтами (𝜏 = 𝜀𝑡) зображуються асимптотичними розви-
неннями за дробовими степенями малого параметра 𝜀, показники яких залежать
як вiд кратностi елементарних дiльникiв, що вiдповiдають кореням характеристи-
чного рiвняння, так i вiд поведiнки коефiцiєнтiв системи. Аналогiчнi результати
для сингулярно збурених систем та для сингулярно збурених систем з особливою
точкою були отриманi Й. Сибуєю та М. Iвано (Sibuya, 1962; Iwano, 1963, 1964).

Асимптотичний аналiз сингулярно збурених систем, проведений в роботах С.
Ф. Фещенка i М. I. Шкiля, став поштовхом для дослiдження систем виду (6)
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iз виродженою матрицею при похiдних. Однак безпосередньо перенести резуль-
тати дослiджень систем (6) на системи iз виродженою матрицею при похiдних
не вдавалося. Першими кроками в цьому напрямку можна вважати публiкацiї
американських математикiв С. Кемпбела та Р. О’Меллi. Ними була розглянута
автономна система, в якiй матриця 𝐵 залежить вiд параметра 𝜀, але не зале-
жить вiд 𝑡 (O’Malley & Fhaherty, 1978). Зокрема, в (Campbell, 1980) побудовано
асимптотичне розвинення фундаментальної матрицi для системи вигляду

(𝐴+ 𝜀𝐵)
𝑑𝑥

𝑑𝑡
= 𝐶𝑥

за умови, що 𝑑𝑒𝑡(𝐴 + 𝜀𝐵) ̸= 0 при 𝜀 > 0 i в’язка матриць 𝐶 − 𝜆𝐴 регулярна.
Проблема побудови загального асимптотичного розв’язку виродженої системи

𝜀ℎ𝐵(𝑡, 𝜀)
𝑑𝑥

𝑑𝑡
= 𝐴(𝑡, 𝜀)𝑥, 𝑡 ∈ [0;𝑇 ], (9)

була розв’язана у 1990-х роках В. П. Яковцем (Yakovets, 1990; Samoilenko et
al., 2000) як у випадку неповного виродження (𝑑𝑒𝑡𝐵(𝑡, 𝜀) ̸= 0), так i у випадку
повного виродження матрицi при похiдних (𝑑𝑒𝑡𝐵(𝑡, 𝜀) ≡ 0). При цьому ним було
встановлено, що у разi виродженостi матрицi 𝐵(𝑡, 0) система (9), крiм класичних
розв’язкiв типу (7), може мати групу розв’язкiв iншого вигляду

𝑥(𝑡, 𝜀) = 𝑣(𝑡, 𝜀) exp

⎛⎝𝜀−ℎ

𝑡∫︁
0

𝜉−1(𝑡, 𝜀)𝑑𝑡

⎞⎠ , (10)

де 𝑛-вимiрний вектор 𝑣(𝑡, 𝜀) та скалярна функцiя 𝜉(𝑡, 𝜀) зображується у виглядi
формальних розвинень за цiлими або дробовими степенями 𝜀. При цьому у випадку
регулярностi граничної в’язки 𝐴(𝑡, 0)− 𝜆𝐵(𝑡, 0) перша група розв’язкiв, що будує-
ться вiдповiдно до класичної теорiї Шлезiнгера-Бiркгофа-Тамаркiна, вiдповiдає
скiнченним елементарним дiльникам цiєї в’язки, а розв’язки другої групи системи
(9) вiдповiдають її нескiнченним елементарним дiльникам.

Використовуючи методи теорiї збурень лiнiйних операторiв та метод дiаграм
Ньютона, В. П. Яковцем було доведено, що у випадку регулярностi граничної
в’язки матриць 𝐴(𝑡, 0)− 𝜆𝐵(𝑡, 0), стабiльностi її спектра та вiдповiдних дiаграм
Ньютона система (9) задовольняє умови теореми про звiднiсть до центральної
канонiчної форми i, отже, є регулярною при досить малих 𝜀, а тому має загальний
розв’язок типу Кошi.

Якщо матриця 𝐵(𝑡, 𝜀) неособлива при досить малих 𝜀 > 0, то кiлькiсть
розв’язкiв вiдповiдної однорiдної системи дорiвнює 𝑛 i вони утворюють загаль-
ний розв’язок цiєї системи. У випадку, коли 𝑑𝑒𝑡𝐵(𝑡, 𝜀) ≡ 0 кiлькiсть зазначених
розв’язкiв менша нiж 𝑛 i дорiвнює 𝑛−𝑘, де 𝑘 – сума довжин жорданових ланцюжкiв
матрицi 𝐵(𝑡, 𝜀) вiдносно оператора 𝐿(𝑡, 𝜀) = 𝐴(𝑡, 𝜀)− 𝜀ℎ𝐵(𝑡, 𝜀) 𝑑

𝑑𝑡 .
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Рiзноманiтнi прикладнi задачi спричинили iнтерес до розвитку теорiї лiнiйних
крайових задач. У 1926 роцi опублiковано статтю Г. Блiсса (Bliss, 1926), в якiй
закладено основи цiєї теорiї. Фундаментальнi результати в теорiї крайових задач
для лiнiйних систем диференцiальних рiвнянь в останнi 30 рокiв були отриманi в
роботах I. T. Кiгурадзе, Т. А. Чантурiї (Kiguradze & Chanturia, 1990; Kiguradze,
1988), А.М. Самойленка, О. А. Бойчука (Boichuk & Samoilenko, 2004), В.А. Михай-
леця (Mikhailets & Murach, 2014; Gnyp, Mikhailets, & Murach, 2016) та iн. Однак
усi вони переважно стосуються систем диференцiальних рiвнянь, записаних в
нормальнiй формi.

Разом з тим, методи розробленi зазначеними науковцями, iнодi можна узагаль-
нити i для крайових задач для диференцiально-алгебраїчних систем. Так, О. А.
Бойчук (Boichuk & Samoilenko, 2004) розглядає нетерову крайову задачу вигляду

𝑑𝑥

𝑑𝑡
= 𝐴(𝑡)𝑥+ 𝑓(𝑡), 𝑡 ∈ [0;𝑇 ],

𝑙𝑥(·) = 𝛼,

де 𝐴(𝑡) квадратна матриця 𝑛-порядку, елементи якої дiйснi, неперервнi на вiдрiзку
[0;𝑇 ] функцiї, 𝑓(𝑡) – 𝑛-вимiрна вектор-функцiя з неперевними компонентами, 𝛼 –
𝑚-вимiрний вектор констант iз 𝑅𝑚, 𝑙 – лiнiйний векторний функцiонал, визначений
на просторi 𝑛-вимiрних, неперервних на вiдрiзку [0;𝑇 ] вектор-функцiй.

Суттєва особливiсть таких задач полягає в тому, що вони зводяться до рiвнянь
з оператором, який не має оберненого, що не дозволяє безпосередньо застосову-
вати традицiйнi методи дослiдження крайових задач. У зазначенiй монографiї
дослiджується проблема знаходження конструктивних умов iснування i побудови
розв’язкiв таких крайових задач. Для лiнiйних нетерових операторiв запропо-
новано новi конструкцiї узагальнено-обернених (псевдообернених) операторiв i
узагальнених операторiв Грiна в банахових i гiльбертових просторах, побудована
загальна теорiя вказаних крайових задач, здiйснено класифiкацiю критичних i
некритичних випадкiв.

Л. Каранджулов (Karandjulov, 1996; Samoilenko, Boichuk, & Karandjulov, 2001)
дослiджує нетеровi сингулярно збуренi крайовi задачi, застосовуючи метод приме-
жевих функцiй. Для лiнiйних сингулярно збурених крайових задач ним отримано
умови iснування i побудовано асимптотичнi розв’язки в так званому стiйкому та
умовно стiйкому некритичних випадках. Розглянуто також критичний випадок,
коли серед власних значень головної матрицi заданої системи диференцiальних
рiвнянь є уявнi.

Результати асимптотичного аналiзу структури загального розв’язку диферен-
цiально-алгебраїчних лiнiйних систем, проведеного в (Samoilenko et al., 2000),
спонукали до вивчення прикладних задач, що пов’язанi iз системами такого типу,
зокрема, початкової i крайових задач та задач оптимального керування. Так, у
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(Starun, 2002) розглядається двоточкова крайова задача вигляду

𝜀𝐵(𝑡)
𝑑𝑥

𝑑𝑡
= 𝐴(𝑡)𝑥, 𝑡 ∈ [0;𝑇 ],

𝑀𝑥(0, 𝜀) +𝑁𝑥(𝑇, 𝜀) = 𝑎(𝜀),

в якiй 𝑑𝑒𝑡𝐵(𝑡) ≡ 0, 𝑀 , 𝑁 – сталi квадратнi матрицi 𝑛-порядку, 𝑎(𝜀) – 𝑛-вимiрний
вектор. Виходячи iз припущення, що в’язка матриць 𝐴(𝑡, 0) − 𝜆𝐵(𝑡) регулярна
i задовольняє умову “ранг-степiнь”, вивчається питання про iснування розв’язку
даної задачi та будується його асимптотика.

Поряд iз крайовими задачами для сингулярно збурених систем iз виродженою
матрицею при похiдних активно вивчаються i крайовi задачi для регулярно збу-
рених систем. Зокрема, в працi (Boichuk & Shegda, 2007) дослiджується лiнiйна
неоднорiдна крайова задача

𝐵(𝑡)
𝑑𝑥

𝑑𝑡
= 𝐴(𝑡)𝑥+ 𝜀𝐴1(𝑡)𝑥+ 𝑓(𝑡), 𝑡 ∈ [0;𝑇 ], (11)

𝑙𝑥(·) = 𝛼 + 𝜀𝑙1𝑥, (12)

де 𝐴(𝑡), 𝐵(𝑡), 𝐴1(𝑡) – квадратнi матрицi 𝑛-го порядку, елементи яких є дiйсними,
достатню кiлькiсть разiв диференцiйовними на вiдрiзку [0;𝑇 ] функцiями, 𝑑𝑒𝑡𝐵(𝑡) ≡
0, 𝑓(𝑡) – 𝑛-вимiрний вектор-стовпець, 𝛼 – 𝑚-вимiрний вектор-стовпець констант; 𝑙,
𝑙1 – лiнiйнi векторнi функцiонали, визначенi на просторi 𝑛-вимiрниx, неперервних
на [0;𝑇 ] вектор-функцiй.

Використовуючи метод Вишика-Люстерника i апарат псевдообернених мат-
риць, запропоновано алгоритм вiдшукання розв’язкiв задач (11), (12) у випадку,
коли кiлькiсть крайових умов, якi заданi лiнiйним векторним функцiоналом, не
збiгається з кiлькiстю невiдомих у виродженiй диференцiальнiй системi.

У працях В.П. Яковця та М.Б. Вiри (Yakovets & Vira, 2010) дослiджується
структура асимптотичних розв’язкiв крайової задачi (1), (2) детально розгля-
даються випадки, пов’язанi з кронекеровою структурою та поведiнкою спектра
граничної в’язки матриць. При цьому припускається, що кронекерева структура
граничної в’язки матриць є стабiльною на певному промiжку. Якщо ж це не так,
тобто iснують точки, де зазначена структура змiнюється, то питання побудови
асимптотичних розв’язкiв крайової задачi (1), (2) залишається вiдкритим.

Висновки
З проведеного аналiзу лiтературних джерел випливає, що на даний час достатньо
добре розроблено методи побудови асимптотичних розв’язкiв сингулярно збурених
систем диференцiальних рiвнянь iз виродженою матрицею при похiдних за умови
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стабiльностi спектра граничної в’язки матриць. Однак проблема побудови асим-
птотичних розв’язкiв крайових задач для систем даного типу є мало вивченою, а
тому актуальною. Зокрема, мало дослiдженим залишається питання про умови
iснування i єдиностi розв’язкiв цих задач та розробка методiв побудови їх асим-
птотики у рiзних випадках, що пов’язанi iз поведiнкою спектра граничної в’язки
матриць.
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Abstract. The article considers the main stages of the development of the theory of asymptotic
integration of boundary-value problems for linear singularly perturbed differential-algebraic systems.
The need of developing constructive methods of approximate integration of boundary-value problems
for differential-algebraic systems is due to the importance of their practical application in the theory
of nonlinear oscillations, stability of motion, control theory, radio engineering, and biology.

In the present paper the authors offer a review of literary sources, which consider the methods
of constructing asymptotic solutions of singularly perturbed systems of differential equations with
a degenerate matrix with derivatives under the condition of stability of the spectrum of the limit
pencil of matrices. It is noted that the problem of constructing asymptotic solutions of boundary-
value problems for systems of this type is poorly studied, and therefore relevant. In particular, the
question of the conditions for the existence and uniqueness of the solutions of these problems and the
development of methods for constructing their asymptotics in various cases related to the behavior of
the spectrum of the limit pencil of matrices has been poorly researched.

Keywords: differential-algebraic system; boundary value problem; singularly perturbed system.
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