About Taylor coefficients of Hardy class functions

Authors

  • Valeriya V. Bovsunovska Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
  • Mykola V. Haevskyi Volodymyr Vynnychenko Central Ukrainian State Pedagogical University, Kropyvnytskyi, Ukraine
  • Petro V. Zaderei Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine https://orcid.org/0000-0002-8132-4503

DOI:

https://doi.org/10.20535/mmtu-2019.2-005

Keywords:

Taylor series, Fourier series, Hardy’s class, Summative function, Hardy–Littlewood inequality, Analytical function.

Abstract

Let $D = \{ z \in \mathbb{C}: |z| < 1 \}$, $A(D)$ is the set of regular in $D$ functions $f$ with Taylor series $f(z)=\sum_{k=0}^{\infty} {c_k} {z^k}$, and $H^{1}$ is a class of functions $f\in A(D)$ such, that $\lim_{r \to 1} \int_{0}^{2\pi} |f(re^{i\theta})|^p d\theta<\infty.$ This class is called the Hardy class. It is known (Privalov, 1950), that in order for $f\in H^{2}$ it is necessary and sufficient that the series $\sum_ {k=0}^{\infty} |{c_k}|^2,$ and if the series $\sum_{k=0}^{\infty} |c_k|^ \frac{p}{p-1}$, for $p\geqslant2,$ then the function $f(z)=\sum_{k=0}^{\infty} {c_k} {z^k}$ will belong to the class $H^p$, $p\geqslant2$. In addition, if $f(z)\in H^{p}$, $1

References

Gоluzin, G. M. (1965).The geometric theory of functions of a complex variable [in Russian]. Moscow: Nauka.

Privalov, I. I. (1950).Boundary properties of analytic functions [in Russian]. Moscow: Gostekhizdat.

Zaderei, P. , Gaevskij, M., & Veremii, M. (2017). Asymptotics of the integral of a modul of function given by a Fourier series. Bulletin of Taras Shevchenko National University of Kyiv. Mathematics. Mechanics, 37, 10–17.

Zygmund, A. (2003). Trigonomertric series (3rd ed.). Cambridge University Press.

Issue

Section

Analytical methods in mathematics