About Taylor coefficients of Hardy class functions
DOI:
https://doi.org/10.20535/mmtu-2019.2-005Keywords:
Taylor series, Fourier series, Hardy’s class, Summative function, Hardy–Littlewood inequality, Analytical function.Abstract
Let $D = \{ z \in \mathbb{C}: |z| < 1 \}$, $A(D)$ is the set of regular in $D$ functions $f$ with Taylor series $f(z)=\sum_{k=0}^{\infty} {c_k} {z^k}$, and $H^{1}$ is a class of functions $f\in A(D)$ such, that $\lim_{r \to 1} \int_{0}^{2\pi} |f(re^{i\theta})|^p d\theta<\infty.$ This class is called the Hardy class. It is known (Privalov, 1950), that in order for $f\in H^{2}$ it is necessary and sufficient that the series $\sum_ {k=0}^{\infty} |{c_k}|^2,$ and if the series $\sum_{k=0}^{\infty} |c_k|^ \frac{p}{p-1}$, for $p\geqslant2,$ then the function $f(z)=\sum_{k=0}^{\infty} {c_k} {z^k}$ will belong to the class $H^p$, $p\geqslant2$. In addition, if $f(z)\in H^{p}$, $1References
Gоluzin, G. M. (1965).The geometric theory of functions of a complex variable [in Russian]. Moscow: Nauka.
Privalov, I. I. (1950).Boundary properties of analytic functions [in Russian]. Moscow: Gostekhizdat.
Zaderei, P. , Gaevskij, M., & Veremii, M. (2017). Asymptotics of the integral of a modul of function given by a Fourier series. Bulletin of Taras Shevchenko National University of Kyiv. Mathematics. Mechanics, 37, 10–17.
Zygmund, A. (2003). Trigonomertric series (3rd ed.). Cambridge University Press.
Downloads
Issue
Section
Analytical methods in mathematics
License
Copyright (c) 2019 Mathematics in Modern Technical University
This work is licensed under a Creative Commons Attribution 4.0 International License.