Scientific heritage of Ukrainian mathematician V. K. Dzyadyk (to the centennial of the birth)

Authors

DOI:

https://doi.org/10.20535/mmtu-2018.1-117

Keywords:

Favard problem, Kolmogorov–Nikolsky problem, Approximation theory, Best approximation, Favard constants, Fourier series linear methods summation, Fejér sums, Rogozinski method

Abstract

18th February 2019 is the centennial of the birth of renowned Ukrainian mathematician, corresponding member of NAS, V. K. Dzyadyk, whose scientific heritage has important results for functions approximation theory. The scientist‘s major works are related to constructive complex variable theory. The paper covers two important problems the solutions of which led the scientist to worldwide fame. These are Favard problem of best approximation of class ${{W}^{r}}$ functions with fractionary $r$ and Kolmogorov–Nikolsky problem on precise suprema of deviations of Fourier series linear methods summation for some classes ${{W}^{r}}{{H}_{\omega }}.$ V. K. Dzyadyk made a considerable contribution to the development of approximation theory and combined fruitful scientifi c work with brilliant pedagogical activity.

References

Belyi, V. I., Golub, A. P., & Shevchuk, I. A. (1989). Dzyadyk’s research on the theory of approximation of functions of a complex variable. Ukrainian Mathematical Journal, 41(4), 384–395. https://doi.org/10.1007/BF01060614

Bernshtein, S. N. (1912). On the best approximation of continuous functions by means of polynomials of a given degree [in Russian]. Soobshch. Kharkov. Mat. Obshch, 2, 49–194. http://www.mathnet.ru/links/383b5e119af3c64e3d66f5b8b6005863/khmo106.pdf

Dzyadyk, V. K. (1953). On best approximation in the class of periodic functions having a bounded $s$-th derivative [in Russian]. Izvestiya Akad. Nauk SSSR. Ser. Mat., 17(2), 135–162. http://www.mathnet.ru/links/ac650fd7901ef146379c847904d4ed04/im3444.pdf

Dzyadyk, V. K. (1959). Best approximation on classes of periodic functions defined by kernels which are integrals of absolutely monotone functions [in Russian]. Izvestiya Akad. Nauk SSSR. Ser. Mat., 23(6), 933–950. http://www.mathnet.ru/links/4c7ecd1879d4f2c667b38a2c52c3174a/im3822.pdf

Dzyadyk, V. K. (1960). Investigation of approximative and geometric properties of certain classes of functions: Abstract of Doctor of Science thesis (Unpublished doctoral dissertation) [in Russian]. Lutsk Pedagogical Institute, Lutsk.

Favard, J. (1937). Sur les meilleurs procédés d’approximation de certaines classes de fonctions par des polynômes trigonométriques. Bull. sci. math, 61, 209–224, 243–256. https://gallica.bnf.fr/ark:/12148/bpt6k96298508

Gaier, D. (1980). Vorlesungen über Approximation im Komplexen (Vol. 38). Basel: Birkhauser. https://doi.org/10.1007/978-3-0348-5812-0

Illiashenko, V. Y. (2017). Vladyslav Kyrylovych Dzyadyk is the pride of Ukrainian mathematics [in Ukrainian]. In Proceedings of Eighteenth International Scientific Mykhailo Kravchuk Conference, October 7–10, 2017, Kyiv: Vol. 2. (pp. 267–273). Kyiv: Igor Sikorsky Kyiv Polytechnic Institute. http://matan.kpi.ua/public/files/2017/kravchuk-conf2017/Kravchuk2017-vol2.pdf

Jackson, D. (1911). Über die Genauigkeit der Annäaherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung. Gottingen: Dieterich. https://gdz.sub.uni-goettingen.de/id/PPN30230648X

Kolmogoroff , A. (1935). Zur Grössenordnung des Restgliedes Fouriershen Reihen differenzierbarer Funktionen. Annals of Mathematics, 36, 521–526. https://doi.org/10.2307/1968585

Lebesgue, H. (1910). Sur la représentation trigonométrique approchée des fonctions satisfaisant à une condition de Lipschitz. Bulletin de la Société Mathématique de France, 38, 184–210. http://www.numdam.org/article/BSMF_1910__38__184_0.pdf

Nikolsky, S. (1945). Approximations of periodic functions by trigonometrical polynomials [in Russian]. Trav. Inst. Math. Stekloff, 15, 3–76. http://www.mathnet.ru/links/3f0198ead28e193118629d1ebb5a8723/tm1646.pdf

Nikolsky, S. (1946). Approximation of functions in the mean by trigonometrical polynomials [in Russian]. Bull. Acad. Sci. URSS. Ser. Math., 10, 207–256.

Stepanets, A. I. (1981). Uniform approximations by trigonometric polynomials [in Russian]. Kyiv: Naukova dumka.

Stepanets, O. I. (1989). Dzyadyk’s research on the theory of approximation of periodic functions. Ukrainian Mathematical Journal, 41(4), 379–383. https://doi.org/10.1007/BF01060613

Stepanets, O. I. (2004). Development of the theory of approximation in Ukraine [in Ukrainian]. Bulletin of Ukrainian Mathematical Society, (15), 7–16.

Issue

Section

Methods of teaching and history of mathematics