Some comments on the paper "O jednom O-inverznom stavu" by Vojislav G. Avakumović

Oleg I. Klesov, Josef G. Steinebach


Some comments concerning the origin of the (R–O) notion for real functions are given, which has been used in the paper above, but was first introduced by Avakumović (1935). Moreover, some later extensions and generalizations of such functions are briefly discussed.


Regularly varying functions; ORV-functions; Non-degenerate group of regular points; Preserving the asymptotic equivalence.

Full Text:



Aljančić, S., & Aranđelović, D. (1977). O-regularly varying functions. Publications de l’Institut mathematique, 22 (42), 5–22.

Avakumović, V. G. (1935). Sur une extension de la condition de convergence des théoremes inverses de sommabilité. C. R. Acad. Sci. Paris, 200 , 1515–1517.

Avakumović, V. G. (1936a). O jednom O-inverznom stavu. Rad Jugoslovenske Akademije Znatnosti i Umjetnosti (Rareda Matematičko–Prirodoslovnogo), 254 (79), 167–186.

Avakumović, V. G. (1936b). Über einer O-Inversionssatz. Bull. Int. Acad. Youg. Sci., 29–30 , 107–117.

Bari, N. K., & Stechkin, S. B. (1956). Best approximations and differential properties of two conjugate functions [in Russian]. Trudy Moskovskogo Matematicheskogo Obshchestva, 5 , 483–522.

Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1989). Regular variation (Vol. 27). Cambridge: Cambridge university press.

Bojanic, R., & Seneta, E. (1971). Slowly varying functions and asymptotic relations. Journal of Mathematical Analysis and Applications, 34 (2), 302–315.

Buldygin, V. V., Indlekofer, K.-H., Klesov, O. I., & Steinebach, J. G. (2018). Pseudo regularly varying functions and generalized renewal processes. Berlin: Springer.

Buldygin, V. V., Klesov, O. I., & Steinebach, J. G. (2002). Properties of a subclass of Avakumović functions and their generalized inverses. Ukrainian Mathematical Journal, 54 (2), 179–206.

Buldygin, V. V., Klesov, O. I., & Steinebach, J. G. (2004). On factorization representations for Avakumović–Karamata functions with nondegenerate groups of regular points. Analysis Mathematica, 30 (3), 161–192.

Cline, D. B. H. (1994). Intermediate regular and Π variation. Proceedings of the London Mathematical Society, 3 (3), 594–616.

Drasin, D., & Seneta, E. (1986). A generalization of slowly varying functions. Proceedings of the American Mathematical Society, 96 (3), 470–472.

Feller, W. (1969). One-sided analogues of Karamata’s regular variation. L’Enseignement Math, 15, 107–121.

Karamata, J. (1936). Bemerkung über die vorstehende Arbeit des Herrn Avakumović, mit näherer Betrachtung einer Klasse von Funktionen, welche bei den Inversionssätzen vorkommen. Bull. Int. Acad. Youg. Sci, 29–30 , 117–123.

Krasnosel’skii, M. A., & Rutickii, Y. B. (1961). Convex functions and Orlicz spaces. Groningen: P. Noordhoff.

Matuszewska, W. (1962). Regularly increasing functions in connection with the theory of ${{L}^{*varphi }}$-spaces. Studia Mathematica, 21 (3), 317–344.

Matuszewska, W. (1965). A remark on my paper "Regularly increasing functions in connection with the theory of ${{L}^{*varphi }}$-spaces". Studia Mathematica, 25, 265–269.

Seneta, E. (1976). Regularly varying functions. Berlin: Springer-Verlag.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.