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Abstract

In this article, we study a Dirichlet problem for a generalized Laplace’s equation.
We consider a construction of Laplacian with respect to a measure, that generalizes the
classical Laplace’s operator to the case of an arbitrary measure. Certain properties of
the constructed Laplacian are studied and a Dirichlet problem for Laplace’s equation
with this new Laplacian is set.

We propose a general solution construction framework for the Dirichlet problem
in a ball in 2- and 3-dimensional spaces in the case of densities, that are invariant
to orthogonal transforms. Using this framework we find explicit solutions for several
important and rich families of densities, with the Gaussian density among them.
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1 Introduction

The construction of divergence with respect to (w.r.t.) a measure and Laplacian w.r.t. a
measure allows us to generalize classical divergence and Laplacian operators to the
case of non-invariant measure. The problem of generalizing classical results of math-
ematical physics to the case of non-invariant measure is quite promising from the
standpoint of the possibility of transferring certain results to the case of an infinite-
dimensional argument. For more detail, see the following papers: (Bogdanskii, 2012),
(Bogdanskii, 2013), (Bogdanskii & Sanzharevskii, 2014), (Bogdanskii & Potapenko,
2016) and (Bogdanskii & Potapenko, 2017).

Let us now describe the construction of divergence w.r.t. a measure and Laplacian
w.r.t. a measure we will be using in this paper.

Let (X, 2, 1) be a space with a measure, where X = R™ 2l is a Borel o-algebra
of subsets of X, and pu is a signed measure (from now on — just «measure») on 2
(whether finite or infinite).

Let us also consider Z € C{(X, X), where C} (X, X) denotes a space of all vector
fields on X with values in X that are continuously differentiable, and are bounded on
X together with their first derivatives. By ®Z(x() we denote the flow of the vector
field Z at the time ¢ valued at the point xy € X.

Let’s consider the next initial value problem

d
{ So(t) = Z(a(t) Wt € R
z(0) = xg

Since Z € C}(X, X), there exists a unique solution of this problem z(t) = ®(t, zo) =||
O (o).

Thus, for every fixed t € R we've got a map R™ 3 zy — ®Z(xy) € R™. One can
prove that it is a diffeomorphism.

Considering t as a parameter, we obtain a one-parameter family of diffeomorphisms
®Z. This family is called a «flow of vector field Z».
Since for every t € R: ®Z is a diffeomorphism, one can easily prove next

Proposition 1.1. If A € A, then for each t € R : ®Z(A) € A. Furthermore, for
every t € R a map A > A — p(®Z(A)) is a measure.

We will also need the next theorem.

Theorem 1.2 (Nikodym, Vitali). Let {p,}72, be a sequence of measures on 2L and
for every A € A there exists lim p,(A) =: u(A). Then p is a measure.
n—oo

Proof. See (Bogachev, 2007). O
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Definition 1.3. Measure p is said to be «differentiable» along a field Z if for every
d
A € 2 there exists &‘0 p(®Z(A)) =: 9(A). Measure 9 in such a case is called a

«derivative» of measure p along a field Z.

Remark 1.4. The fact that 9 is a measure immediatly follows from Nikodym—Vitali
theorem.

It turns out that the derivative 9 is absolutely continuous w.r.t. p (see for exam-
dv

ple (Bogachev, 2010)). Its density 1 is denoted as div, Z (read «divergence of Z
o

w.r.b. ).

Let’s now consider a measure that has a density f w.r.t. some measure i, which is
differentiable along a field Z (we denote such a measure by f - ). It turns out that in
such a case we can rewrite divy., Z in terms of div, Z.

Proposition 1.5. Let f : X = R; f € CHX), where CH(X) denotes a space of all
continuously differentiable real-valued functions on X that are bounded on X together
with their first derivative. If measure p is differentiable along Z then measure f - s
differentiable along Z and the next equality holds

divy., Z =div,(fZ) = fdiv, Z + (grad f, Z) (1)
Proof. See (Bogdanskii & Sanzharevskii, 2014). O

It is also known (and one can easily prove it) that if a field Z € C}(X) then the
Lebesgue measure A («volumey) is differentiable along Z and, furthermore, divy Z =

divz =3 &
k=1

8Zk '
Definition 1.6. Laplace’s operator w.r.t. a measure p is defined as follows
A, C*X) = C(X); A, :=div,ograd.

Remark 1.7. From the definition 1.6 we see that Laplace’s operator w.r.t. a measure y
is well-defined only for those functions u € C?(X) for which the field grad u is bounded
on X and p is differentiable along grad u.

Let Bg be an open ball with the radius R and the center at 0 € R™. Let A be the
Lebesgue measure on R"™.

Let us now consider the measure p = f - A, where f € C'(Bg) and f is invariant
with respect to orthogonal transforms, i.e. f(Z) = g(||7]|).

We now consider the next Dirichlet problem. Find a function v : B — R; u €

C%(Bg) N C(Bg) such that

{ A, u(Z) = div,(grad u(T)) = 0 V7 € B, 2)
—h

“‘aBR
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where h is some predefined continuous function on border 9Bp of the ball.
The uniqueness of the solution of the problem (2) immediately follows from the
maximum principle for Laplacian w.r.t. a measure (see (Bogdanskii, 2016)).
According to proposition 1.5 we can rewrite problem (2) in the next form

{ fAu+ (grad f,grad u) = 0 VZ € Bp, (3)
=h

u‘aBR

2 Solutions Construction Framework

For 2- and 3-dimentional cases there were obtained a general framework for construct-
ing solutions of the Dirichlet problem (3). With its help all the complexity of solving
a Dirichlet problem in these cases can be reduced to solving an ordinary differen-
tial equation of the special type. So, let’s describe these framework (or «recipe» for
constructing solutions) in more detail.

2.1 2-dimensional case

First, we have to solve next ordinary differential equation

p*P"(p) + p(1+ p(In f(p))")P'(p) —n*P(p) =0, n € NU {0} (4)

More precisely, for each n € NU {0} we have to find a solution P,(p) of equation
(4), that is bounded on the segment [0, R] together with its derivative and such that
PA(R) #0.

Lemma 2.1. Fquation (4) cannot have two linearly independent solutions, that are
bounded on [0, R] together with their first derivative.

Once we have found such a solution P,(p), then the solution of the Dirichlet prob-
lem (3) is defined by the next formula

« = P,(p .
u(p, p) = ?0 + Z Pn((R)) (av, cosnp + B, sinnyp),

n=1

where
27

an:—/f(gp)cosngodgo, n >0,

™
0

2w
1
ﬁn:—/f(w)sinwdso, n>1.
T
0
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2.2 3-dimensional case

Similarly to 2-dimensional case, first we have to solve ordinary differential equation of
the next form

r2P"(r) +r(24+r(n f(r)) )P (r) —n(n+ 1)P(r) =0, n € NU {0} (5)

Analogically, for each n € NU {0} we have to find a solution P,(r) of equation
(5), that is bounded on the segment [0, R] together with its derivative and such that

Pu(R) #0.

Similarly, we have the next result.

Lemma 2.2. Fquation (5) cannot have two linearly independent solutions, that are
bounded on [0, R] together with their first derivative.

Once we have found such a solution P,(r), then the solution of the Dirichlet problem
(3) is defined by the nex formula

u(r, 0, ) = Zzank ; (0, ),

n=0 k=—n
where
// f(6 ,p)dddp
Apf = <02 , ne NU{0}, |[k] <n
/ / V(0. ) d0 g
x[0,27]

Here Y,1(0, ) denotes spherical harmonics. For more detail on spherical harmonics
see (Sveshnikov, Bogolyubov, & Kratsov, 2004).

3 Explicit Solutions

Using the framework, described above, there were obtained explicit solutions of the
Dirichlet problem in a ball for some important special cases of densities f.

Theorem 3.1. Let m = 2, (%) = A||Z||®, where A > 0, B > 0. Then solution of

the problem (3) in polar coordinates is as follows

o0 >\n
— % + Z (%) (o cosnp + B, sinny),
n=1

where

—B + vV B?% + 4n?
,n

Ap =
2

\
-
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27

@nz—/f(w)cosnsod% n =0,

T
0

1 7T
:—/f(go)sinngodgp, n>1
T
0

Theorem 3.2. Let m = 2, f(¥) = Ae BIT" where A >0, B >0, d > 0. Then
solution of the problem (3) in polar coordinates is as follows

n Py (5, 2n+d , Bp?) .
) + Z ( ) ’/l 2n;_d,BRd) (Ozﬂ cos ny + /BTL Slnnap)

(here 1 Iy denotes confluent hyperheometric function of the first kind),

where
27

o / f(¢) cosnpdp, n >0,

Tr
0

1 ™
:—/f(go)sinngodgo, n>1
T

Theorem 3.3. Let m = 3, f(Z) = A||Z||®, where A >0, B > 0. Then solution of
the problem (3) in spherical coordinates is as follows

u(r,0,¢) = Zzank( ) Yoe(0, ),

n=0 k=—n
where
—1 — B 1
+ /(14 B)? —|—4n(n—|—1), "0
2
/ f(0 ,p)dddp
x[0,27]
ank— , ne NU{0}, [k|<n
(Yor(0, ) df d
[0,7]x[0,27]

Theorem 3.4. Let m = 3, f(¥) = Ae BIFI* where A >0, B> 0, d > 0. Then
solution of the problem (3) in spherical coordinates is as follows

n n+d+1 lgr )

n 1 F
T 9’90 Z Z Onk (T) 11F11((n nJrngl,BRd) Ynk(e’ QO),

n=0 k=—n d’
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// 70 ) ddyg

x[0,27]

ank =
// Yo, )2 d6 dg

x[0,27]

where

, neNU{0}, |k|<n

4  Summary

In this article the Dirichlet problem for Laplace’s equation with Laplacian of a special
form was studied. Certain important properties of the new Laplacian were presented,
which helped to rewrite our Dirichlet problem in the form of the classical mathematical
physics problem.

We presented the general framework (or scheme) for constructing solutions for the
Dirichlet problem in a ball in 2- and 3-dimensional spaces in the case of densities,
which are invariant to orthogonal transforms. Then using this framework we obtained
explicit solutions for this Dirichlet problem for several important and rich families of
densities, one of which includes, among others, the Gaussian density.
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B. [Ipam (2018). Baaua lipixje B KyJ1i just piBasinus Jlamnaca 3 namsacianom 3a mipoto. Mathemati-
¢s in Modern Technical University, 2018(1), 11-18.

Awnoranig. Opnieo 3 HalbLAbm BimoMux 3a1ad MareMarudHol ¢izukn € 3amaqda Jlipixiae mis
piBuguus Jlamnaca. Pipuguaus Jlamnaca onucye 6e371i4 crarioHapHnx (DI3UIHUX ITPOIECiB 1 BAHUKAE B
DaraTboX 3a/[aUaxX MeXaHIKH, TEIIONPOBIIHOCTI, eJIeKTPOCTaTHKY, IiIpaB/iiku Tomo. He3Bazkaoun Ha
Te, MO IO 337349y BBayKalOTh KJIACUIHOIO, IiJI Yac i1 po3B’sd3aHHl BUHHKAE OAaraTo TPYIHOIIIB, SKIIO
JIOCTIIZKYBaHa 001acTh Mae hopMy, CKIAJHINLY, aHizK KPYT, KyJsd, KiJIbIe, TPIMOKYTHHK TOIIO.

Y poboTi po3risigaeThes y3araabnennd 3aaadi ipixae pisa pisusausa Jlamnaca. [Iag moro Bu-
KOPHUCTAHO KOHCTPYKITIO JaITaciana 3a Mipoio, sKa y3arajabHIOE 3BHYaiHuil omepaTop Jlammaca ma
BUTIAI0K JOBLABHOT MipH. 3 (pizutdHOT TOUKH 30py 1€ A€ MOXKJIMBICTD PO3T/ISLIATH 3321y B 00/JIaCTIX,
Kl He € OMHOPITHUMH — MalOTh 3MIHHY TEIJIONPOBIIHICTH, €eKTPOTPOBIAHICTH TOIIO.

Jlani cdopmynroBano nmoctaHoBky 3agaqdi ipixie g piBasauuag Jlamiaca 3 HOBUM Jariacia-
Hom. [lobytoBano 3arajbHy cxemy po3B’s3anbsd 3aja4i /lipixje B Kysi y JIBOBUMIPHOMY Ta TPUBH-
MIpHOMY TpPOCTOpaxX y BHUIMAJIKY TILIbHOCTEH, dKi € iHBaplaHTHUMH BiTHOCHO OPTOTOHAJBHOI TPYIH
neperBopedb. KpiMm Toro, 3HaiiieHO IBHI pO3B’S3KH 3a/4a4l /I JOCUTH Oararux Ta BaKJIHBUX KJIAcCiB
IMLTBHOCTER, cepe/l dKUX € 1 rayciBchbKa MILIBHICTD.

Koaouosi cioBa: wmipa; muBeprewntis; jamtacian; piBasuns Jlamraca; 3amaqda lipixire.
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